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Abstract- The realization of the monthly Nigerian interbank call rates herein referred to as IBCR and analyzed span from 

January 2006 to August 2013. The time plot of IBCR in Figure 1 shows an overall horizontal secular trend.  There are two 

peaks: one between 2008 and 2009 and the other between 2011 and 2013. The two peaks are separated by a trough in 2010. 

Augmented Dickey Fuller (ADF) Test shows that IBCR is non-stationary. Seasonal (i.e. 12-point) differencing of IBCR yields 

a series called SDIBCR with basically a similar structure as IBCR, a trough between 2009 and 2010 separating two peaks 

(See Figure 2). The ADF seasonality test adjudges SDIBCR as still non-stationary. A non-seasonal differencing of SDIBCR 

yields DSDIBCR which has a horizontal trend and no discernible seasonality. It is adjudged to be stationary by the same test 

procedure. The correlogram of DSDIBCR in Figure 4 shows significant negative spikes at lag 12 for both the utocorrelations 

and partial autocorrelations. This indicates 12-monthly seasonality and the involvement of a seasonal moving average 

component of order one and a seasonal autoregressive component, also of order one, respectively. Based on this 

autocorrelation structure, four SARIMA models: (1, 1, 1)x(1, 1, 1)12, (1, 1, 2)x(1, 1, 1)12, (2, 1, 1)x(1, 1, 1)12 and (2, 1, 2)x(1, 

1, 1)12 are proposed and fitted. In the Akaike’s Information Criterion (AIC) sense, the SARIMA(2, 1, 1)x(1, 1, 1)12 model is 

adjudged the most adequate.  
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1. INTRODUCTION 

Interbank call rates are money market indicators. They 

refer to the rates of interest charged on short-term loans 

made between banks. They depend on the availability of 

money, prevalent rates and the contract terms.A time series 

is said to be seasonal or to have a seasonal component if it 

has a tendency to fluctuate periodically. Economic and 

financial data like these ones are known to be seasonal as 

well as volatile. Prices, inflation rates, gross domestic 

product, foreign exchange rates, etc. are known to exhibit 

seasonality. Often, the ‘seasons’ are identifiable. For 

instance, Etuk(2012a) observed that daily Nigeria Naira – 

US Dollar exchange rates tended to have peaks on Fridays 

and troughs on Mondays. Martinez et al.(2011) observed 

that the number of reported cases of dengue in Campinas, 

State of Sao Paulo, Brazil tended to show a maximum in 

the rainy season and a minimum in the dry season. Such 

seasonal series may be modeled using a seasonal Box-

Jenkins approach. In this work the aim is to show that 

Nigerian interbank call rates are seasonal of period 12 

months. Moreover a seasonal autoregressive integrated 

moving average (SARIMA) model is proposed and fitted 

to the call rates. This is with a view to providing basis for 

possible forecasting of the series.  

2. REVIEW OF LITERATURE 

Amongst authors who have written extensively on the 

seasonality of economic and financial time series are 

Ismail and Mahpol(2005), Brida and Garrido(2009), 

Saz(2011), Prista et al.(2011), Etuk(2012b, 2014), 

Chikobvu and Sigauke(2012), Linlin and Xiaorong(2012), 

Eni and Adesola(2013), Bako et al.(2013), to mention a 

few. SARIMA models were proposed to capture the 

seasonal nature of such time series. These models have 

been extensively applied in the modeling of intrinsically 

seasonal series. A few other researchers who have 

concerned themselves with the study and application of 

such models are Helman(2011), Nadarajah and 

Emami(2013), Martinez et al.(2011) and Surhatono(2011). 

Etuk(2014) has demonstrated the likely supremacy of 

SARIMA models over the more general autoregressive 

integrated moving average (ARIMA) models for modeling 

seasonal series.    

3. MATERIALS AND METHODS 

3.1 Data  
The data for this write-up are interbank call rates amongst 

Nigerian banks from January 2006 to August 2013. They 

are obtained from the website of the Central Bank of 

Nigeria www.cenbank.org in the Data and Statistics 

section and under the Money Market Indicators subsection. 

mailto:ettetuk@yahoo.com
http://www.cenbank.org/
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3.2 Seasonal Box-Jenkins Modelling  
A time series {Xt} is said to follow an autoregressive 

moving average model of order p and q, denoted by 

ARMA(p, q) if it satisfies the following difference 

equation 

 

Xt - 1Xt-1 - 2Xt-2 - … - pXt-p =  t + 1t-1 + 2t-2 + … + 

qt-q (1) 

 

where the ’s and ’s are constants such that the model is 

stationary as well as invertible and {t} is a white noise 

process. Let the model (1) be put as 

 

A(L)Xt = B(L)t                                  

(2) 

 

where A(L) the autoregressive(AR) operator is given by 

A(L) = 1 - 1L - 2L
2
 - … - pL

p
 and B(L) the moving 

average(MA) operator is given by B(L) = 1 + 1L + 2L
2
 + 

… + qL
q
 and L is the backward shift operator defined by 

L
k
Xt = Xt-k. It is well known that for the model (1) or (2) to 

be stationary and invertible, the zeroes of A(L) and B(L) 

must be outside the unit circle, respectively.  

 

Most real-life time series are non-seasonal. Box and 

Jenkins(1976) proposed that for such a non-seasonal series 

differencing of an appropriate order could render the series 

stationary. Suppose d is the minimum degree of 

differencing necessary for stationarity of {Xt}. Let the d
th

 

difference of Xt be denoted by 
d
Xt. If the series {

d
Xt} 

follows an ARMA(p, q), then the original series {Xt} is 

said to follow an autoregressive  integrated moving 

average model of orders p, d and q denoted by ARIMA(p, 

d, q). 

 

Suppose {Xt} is seasonal of period s. Box and 

Jenkins(1976) proposed that it be modeled by 

 

A(L)(L
s
)

d


D
sXt = B(L)(L

s
)t   (3) 

 

where (L) and (L), the respective seasonal AR and MA 

operators, are polynomials such the entire model is 

stationary as well as invertible. s is the seasonal 

difference operator defined by s = 1 - L
s
. Suppose the 

seasonal operators are of orders P and Q respectively. 

Then {Xt} is said to follow a multiplicative seasonal 

autoregressive integrated moving average model of orders 

p, d, q, P, D, Q and s denoted by SARIMA(p, d, q)x(P, D, 

Q)s model.  

3.3 Sarima Model Fitting 
Sarima model estimation invariably begins with the 

determination of the orders p, d, q, P, D, Q and s. Seldom 

is it possible to determine the seasonal period s from the 

time plot. The correlogram of the stationary differenced 

series usually better depicts the period s as the lag for 

which there is a significant spike. Often, for stationarity it 

is enough to put the differencing orders equal to one each. 

That is, d = D = 1.  The AR orders p and P, may be 

estimated by the non-seasonal and seasonal cut-off lags of 

the partial autocorrelation function(PACF) respectively. 

Similarly, the MA orders q and Q may be estimated by the 

non-seasonal and seasonal cut-off lags of the 

autocorrelation function(ACF) respectively. The 

estimation of the parameters of the model is usually done 

using non-linear optimization techniques because the 

model involves items of the white noise process. The least 

squares optimization technique shall be used. Based on the 

observed autocorrelation structure more than one model 

shall be proposed. The most adequate of them shall be 

chosen on the basis of Akaike’s Information 

Criterion(AIC). The chosen model shall be subjected to 

some residual analysis with a view to ascertaining its 

adequacy. An adequate model should have uncorrelated 

and normally distributed residuals. The statistical and 

econometric package Eviews was used for all analytical 

work of this paper. It uses the least squares technique for 

model estimation.  

4. RESULTS 

The time plot of the data IBCR in Figure 1 in Appendix 

shows an overall horizontal trend and two peaks, one 

between 2008 and 2009 and the other between 2011 and 

2013, separated by a trough in 2010. Twelve-point 

differencing of IBCR produces the series SDIBCR which 

has two peaks, one from 2007 to 2009 and the other from 

2011 to 2012(See Figure 2 in Appendix).  Separating these 

peaks is a trough. Non-seasonal differencing of SDIBCR 

yields the series DSDIBCR. Its time plot in Figure 3 in 

Appendix shows a horizontal trend. Seasonality is not 

discernible. The Augmented Dickey Fuller (ADF) Test 

Statistic for IBCR, SDIBCR and DSDIBCR are of values -

2.4, -2.1, and -6.6, respectively. With the 10%, 5% and 1% 

critical values at -2.6, -2.9 and -3.5 respectively, the ADF 

test adjudges both IBCR and SDIBCR as non-stationary, 

but DSDIBCR as stationary. The correlogram of 

DSDIBCR in Figure 4 has significant negative spikes at 

lag 12 for both the ACF and the PACF. This shows that the 

series is 12-monthly seasonal and there are seasonal 

autoregressive and moving average components of order 

one each. Hereby proposed are the Sarima models of 

orders (1, 1, 1)x(1, 1, 1)12, (1, 1, 2)x(1, 1, 1)12, (2, 1, 1)x(1, 

1, 1)12 and (2, 1, 2)x(1, 1, 1)12, with AIC values of 5.14, 

5.37, 5.10 and 5.43, respectively. The best model, with the 

least AIC, is the (2, 1, 1)x(1, 1, 1)12 model.  The estimation 

of the model is summarized in Table 1 in appendix. The 

correlogram of the residuals is in Figure 5 in Appendix and 

their histogram is in Figure 6 in Appendix. Figure 5 in 

Appendix shows that the residuals are uncorrelated and 

Figure 6 in Appendix shows that they are normally 

distributed. Hence the model chosen is adequate. . 
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5. CONCLUSION 

It has been demonstrated that Nigerian monthly interbank 

call rates follow a Sarima(2, 1, 1)x(1, 1, 1)12 model. On the 

basis of this model forecasts may be obtained.  
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APPENDIX 

 
 



Journal of Research in Marketing 

Volume 1 No.1 August 2013 
 

©
TechMind Research, Society         26 | P a g e  

 
 

 
 



Journal of Research in Marketing 

Volume 1 No.1 August 2013 
 

©
TechMind Research, Society         27 | P a g e  

 
FIGURE 4: CORRELOGRAM OF DSDIBCR 
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TABLE 1: ESTIMATION OF SARIMA(2, 1, 1)X(1, 1, 1)12 MODEL 
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FIGURE 5: CORRELOGRAM OF SARIMA(2, 1, 1)X(1, 1, 1)12 RESIDUALS 

 

 
 

FIGURE 6: HISTOGRAM OF SARIMA(2, 1, 1)X(1, 1, 1)12 RESIDUALS 
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