
International Journal of Research in Business and Technology

Volume 6 No. 3 June 2015

©
TechMind Research Society 856 | P a g e

Software Size Estimation: Practical Models and their

Applications in Various Phases of the SDLC

Mohammad A. Rob
University of Houston-Clear Lake

United States

Abstract- Estimating software size has been one of the highly researched topics over the past few decades. Due to the

unpredictable nature of many factors associated with software development projects and ever-changing technological

complexity, the topic still draws widespread attention within the software engineering domain. This paper briefly discusses

few estimation models that can be practically applied to estimate software metrics such as size, effort, and time, without

getting involved into mathematical complexity by a project manager. We also discuss the pros and cons of these models. We

further map the applicability of these models in various phases of the software development life cycle. Finally, we implement

two of these models to develop a user interface that can be used repeatedly or as necessary to estimate the software metrics

during the major stages of its developmental life cycle, and adjust the schedule as necessary.

Key Words- Software; Size; Estimation; Effort; Function Point; Lines of Code; COCOMO; WBS

1. INTRODUCTION

The art and science of software project management can be

described as an adjustment among three important factors:

the size of the software, the time required to complete the

project, and the cost of the project as well. These three

metrics are interdependent levers that a project manager

controls throughout the life of a project [1]. Whenever one

lever is manipulated, subsequently, the other two levers are

affected to some degree. However, the cost of the project

is the most important factor for a project sponsor, followed

by the time required for completion; and both of them in

turn, depend on the size of the project. Many software

project failures are due to unrealistic expectations based on

inaccurate estimations [2][3].

The bulk of the software development cost is due to human

effort, which depends on the size of the project. Effort is

often measured in person-months of the developers such as

programmers, analysts, and project managers. Due to

many interrelated human and technological factors

associated with a software development project which

cannot be defined with certainty, size can only be

estimated. Most software estimation models attempt to

generate an estimation of effort, which can then be

converted into project duration and cost [4]. Although

effort and cost are closely related, they are not necessarily

related by a simple transformation. Therefore, at the

beginning of a project, a manager needs to estimate the

size and depth of a project. Once the size is appreciated,

the effort and time required to develop the software can be

assessed, which in turn, can lead to a more accurate

appraisal of cost. Thus, most of the software estimation

models focus on assessment of the size of a project.

However, the approximation of size depends on many

factors, such as: human interaction with the system,

process-to-process interaction within the system, as well as

the technological complexity of the system. A key factor in

selecting an estimation model is assessing the accuracy of

its estimates.

Many methods have been proposed to obtain a close

approximation of the size of a software project; however,

most of them are too complex, or not practical, or not

accurate. The number of methods grows daily as others in

the field attempt to create more precise estimations based

on their experiences [1][4][5][6]. However, not many

methods can provide all the metrics of size, effort and

time. Many times more than one methods are used to

estimate the software size and other metrics. The most

important factor is to get the best possible estimation of

size at the early stage of the software developmental life

cycle, so that a project manager can create the best

possible plan for the project. Furthermore, some estimation

models are more suitable in certain phases of a software

development life cycle than others, and some can be used

repeatedly throughout the life cycle to revise the project

plan as necessary. The latter is desirable by any project

manager.

In this paper, we briefly discuss the commonly-mentioned

estimation models in the literature that can be practically

applied to estimate software metrics such as size, effort,

and time, without getting involved into mathematical

complexity by a project manager. We also discuss the pros

and cons of these models. We further map the applicability

of these models in various phases of the software

development life cycle. Finally, we implement two of

these models to develop a user interface that can be

repeatedly used to estimate and revise the software metrics

at the major stages of its developmental life cycle. This

kind of user interface will help a project manager to

quickly and repeatedly calculate the software metrics and

International Journal of Research in Business and Technology

Volume 6 No. 3 June 2015

©
TechMind Research Society 857 | P a g e

update the project plan while the developmental effort

continues.

2. AN OVERVIEW OF PRACTICAL

ESTIMATION MODELS

In the following, we briefly review the methods or

combination of methods that can provide an estimation of

the size of a software project within the early stages of its

development. We also provide pros and cons for each of

these methods.

 Industry Standard Percentage Estimation: With this

approach, the time spent in (or estimated for) the

planning phase is used to calculate estimates for the

other software development life cycle (SDLC) phases

[1][6]. Industry standards (or percentages from an

organization’s own experiences) suggest that a typical

business application system spends 15% of its effort in

the planning phase, 20% in the analysis phase, 35% in

the design phase, and 30% in the implementation phase.

This would suggest that if a project takes 4 months in the

planning phase, then the rest of the project likely will

take a total of (4*100/15 – 4) = 22.67 person-months.

Knowing the productivity of the development team, one

can allocate the time and staff needed for to complete

the rest of the project. The limitation of this approach is

that it can be difficult to take into account the specifics

of an individual project in an early stage, which may be

of varying complexity in comparison to a typical

software project. Furthermore, mature software

development companies may have enough experience to

use this projection than a start-up or less proven

company. Nevertheless, the method gives ball-park

figures of software metrics at the early stage of its

development.

 Functional Decomposition Diagram or WBS:
Functional Decomposition Diagram (FDD) or Work

Breakdown Structure (WBS) is typically used as a

technique for separating a business operation into its

functional components or dividing a larger piece of work

into smaller components or tasks [6]. A large or complex

function is more easily understood when broken down

through its functional decomposition. Decomposition is

the process of starting at the high level of a system and

subsequently subdividing that into smaller and smaller

related components. As such, it forms an inverted tree-

like structure, with each leaf defining a function.

Typically FDD uses rectangles to display a function. The

top rectangle represents the system or software as a

whole and it is decomposed into first-level components

identifying their functions. Next, the first-level

components are decomposed into second-level, and so

on, until sufficient level of detail is achieved.

 Once an FDD or WBS is created, the project manager

assigns a time allotment for each function of a software

development project. All functional (developing a form,

report or database) and non-functional requirements

(conducting and interviews, or writing requirements)

need to be considered. Expert judgement of the project

manager and the development group is often called upon

to estimate time for each function. A weighted average

formula can also be used calculate time or duration, T

for each function or task: T = (B + 4P + W)/6, where B

stands for best-case estimate with one time weight, P

stands for probable-case estimate with four times

weight, and W stands for worst-case estimate with one

time weight [8]. Wide-Band Delphi method can also be

used to obtain a better estimation of time, which uses

time estimation from multiple team members of a

project [9].

 An FDD or WBS shows the hierarchical structure of the

components or tasks, but it does not show the sequence

of the tasks to be developed. Thus a new WBS is created

with a list of tasks along with their sequences defining

time and resource (staff) needs to complete each task.

Tools like PERT or Gantt chart can be used to create this

sequence or develop a schedule, and as such an

estimation of project completion time can be obtained

[8]. Software like Microsoft Project can aid in the

schedule development, resource assignment and

estimation of staff need.

 Nermin [10] recently used the FDD technique to

measure functional complexity of a computer system

and investigated its impact on system development

effort. Later, it examines effects of technical difficulty

and design team capability factors in order to construct

the best effort estimation model. With using traditional

regression analysis technique, the study develops a

system development effort estimation model which takes

functional complexity, technical difficulty and design

team capability factors as input parameters.

 Constructive Cost Model or COCOMO: The length of

the software program codes can be used as a predictor of

project characteristics such as size and effort. The

Constructive Cost Model (COCOMO) is an algorithmic

model developed by Barry Boehm to calculate effort,

time and staff requirement of a software development

project based on the number of lines of code to be

developed [5][11]. The model used a basic regression

formula with parameters that are derived from 63

historical projects ranging in size from 2,000 to 100,000

lines of code with a variety of programming languages.

The COCOMO formula calculates software

development effort (in person-months) if the program

size is known. Program size is expressed in estimated

thousands lines of source code (KLOC) to be delivered.

 A line of code (LOC) is defined as a logical line, not

necessarily a physical line. For example, in C and C++ it

is common to count the number of semi-colons and use

that as the line count. In this manner, placing three

logical statements on one physical line still counts as

three lines of code. COCOMO formula varies depending

on the type of software project to be developed: organic,

semi-detached, and embedded. The organic projects fall

in the category of small teams with good experience

working with less than rigid requirements. The semi-

International Journal of Research in Business and Technology

Volume 6 No. 3 June 2015

©
TechMind Research Society 858 | P a g e

detached projects fall in the category of medium teams

with mixed experience working with a mix of rigid and

less than rigid requirements. The embedded projects are

developed within a set of tight constraints. For a semi-

detached project, effort, E in person-months is calculated

as: E = 3.0 (KLOC)
1.12

.

 The most important part of COCOMO model is the

counting of source lines of code for the expected

software to be developed. Although many techniques for

counting lines of code for various languages have been

developed, but the underlying philosophy is the same. It

is the oldest and the most widely used method for

software size estimation. Even though other techniques

have made major in-roads in the world of software

development, LOC remains popular as a technique for

many code intensive applications.

 However, there is a series of arguments against LOC due

to the fact that the delivered functionality per line of

code will vary based on the language being used, and it

is very difficult to count the number of lines of code at

the early stage of a software development project.

Furthermore, in today’s software environment of

graphical user interface (GUI), it does not work well by

itself, but it can be used along with other techniques to

estimate the total software as discussed in the following.

Although COCOMO II has been proposed that addresses

the issue through object points, but other methods as

defined below remain popular [6].

 Function Point Analysis: Function Point Analysis was

an attempt to overcome the difficulties associated with

lines of code as a measure of software size, and to assist

in developing a mechanism to predict effort associated

with software development. The method was first

published by Allan J. Albrecht of IBM in 1979, then

later in 1983[12] [13]. In 1984 Albrecht refined the

method and since then many refines of the method were

proposed since then [14]. It quantifies the functionalities

contained within software in terms that are meaningful

to the users such as inputs, outputs, queries, files, data

and etc. Using a standardized set of basic criteria, each

of the business functions is given a numeric index

according to its type and complexity. The measure

relates directly to the business requirements that the

software is intended to address. It can therefore be

readily applied across a wide range of development

environments. It is independent of programming

language and deals quantitatively with complexity.

However, in order to calculate effort, one needs to know

the productivity rate of the project team, which varies

from company to company, and only the established

company will have the necessary data. Effort is

calculated by dividing the Function Points (FP) by the

delivery rate or productivity, P. For example, a project

with 1000 FP and with a productivity P = 15 FP per

person-month, the Effort = 1000/15 = 67 person-months.

 As effort depends on the productivity of the software

development team, which can be widely varied, the FP

approach is not complete in and of itself to estimate the

size or effort, but in combination with COCOMO and

other models it can provide a very good estimate of

software size in the beginning of its developmental life

cycle. As such, it remains as one of the most widely used

methods in the software industry, and we use them to

develop our user-interface to proof the concept as

outlined in the following.

3. Mapping the Estimation Models with the

Software Developmental Life Cycle

A software development project typically goes through

different stages or cycles. The widely accepted model

known as the Software Development Life Cycle or SDLC,

typically goes though certain sequential phases such as:

planning, analysis, design, and implementation. Each

phase is further subdivided into multiple activities and

there are major outcomes of each phase. During the

planning phase, a project is initiated and a feasibility study

is performed that provides the basic information about the

requirements or functionality of the software. The more

detailed the requirements that can be gathered at this stage,

the better will be the estimation of the size of the overall

project. Based on the requirements in this early stage of the

development, a project manager needs to estimate the size

of the project, create a schedule, and plan accordingly for

the amount of staff required to implement the rest of the

project development phases. These early estimates act as

baselines, which are typically modified or adjusted as more

is learned about the functionality of the software while we

progress through the subsequent phases. The fact that these

estimates are required very early in the software

development project makes it a formidable task. Most

software development efforts fail due to a poor estimate of

its size and other metrics right at the beginning of its life

cycle. However in practicality, not all estimation models

mentioned above can be used at this early stage. As such, it

is important to apply appropriate techniques to obtain a

realistic estimation of software size not only at this stage

but also in other stages of its development.

In Figure-1 below, we provide a framework to map the

various estimation models that should be used in various

phases of the systems development life cycle. As detail

requirements are not know in the planning phase, we

propose to use the industry standard method towards the

end of the planning phase to obtain a ball-park estimate of

the software metrics. We use the PERT or Gantt chart to

develop a project plan. During the early stage of the

Analysis phase, detailed requirements will start to emerge,

and we propose to use the Functional Decomposition or

WBS Diagram to get a better estimate of the metrics, and

accordingly, we update the PERT or Gantt chart. As we

move further into the Analysis phase, more detailed

requirements will emerge, and we propose to use Function

Point along with COCOMO to obtain further accuracy of

the estimations. While we continue with the PERT and

Gantt charts to monitor and control the developmental

effort, we compare the overall progress with the updated

International Journal of Research in Business and Technology

Volume 6 No. 3 June 2015

©
TechMind Research Society 859 | P a g e

estimates by Function Points and COCOMO. This process

continues until the end of the developmental effort.

Figure-1: Mapping Estimation Models with SDLC Phases

along with Project Schedule

4. Development of a User Interface to

Estimate Software Size

In the following, we outline the steps of developing a user

interface that can be repeatedly used to estimate software

size during the major stages of its developmental life cycle

as mentioned above. We use various attributes outlined in

the Function Point Analysis and COCOMO Model to

calculate the major matrices of a software development

project such effort, time, and the number of people needed

to develop the software. We also discuss the necessary

attributes of the two analytical models and outline the steps

necessary to develop and demonstrate our simple software

package. Dennis et al. [1] outlined a three-step process to

estimate effort, time and staffing requirement of a software

development project, and we follow it in order to develop

our user interface.

4.1 The Five Major Functional Components of a

System
One of the primary goals of the Function Point Analysis is

to evaluate system's capabilities from the user's point of

view. To achieve this goal, the analysis is based on various

ways users interact with an information system. From the

user's point of view, a system assists them in doing their

job by providing five basic functions. Two of these address

the data requirements of an end user and are referred to as

Data Functions. The remaining three functions address the

user's needs by accessing internal data and are referred to

as Transactional Functions. Table 1 briefly describes these

functions [6].

Table 1: Five Major Components of the Function Point

Analysis

Functional

Components
Brief description

External

Inputs

A process in which data crosses the

boundary of a system from outside to inside.

The data can be either business information

or control information. User inputs or inputs

from other systems are examples.

External

Outputs

A process in which data passes across the

boundary of a system from inside to

outside. The data are used for reports or

output files sent to other applications.

External

Inquiry

A process with both input and output

functionalities that require data retrieval

from one or more internal logical files or

databases.

Internal

Logical Files

A user identifiable group of logically

related data that resides entirely within the

applications boundary and is maintained

through external inputs.

External

Interface

Files

A group of logically related data that is

used for reference purposes. The data

resides outside the application and is

maintained by other applications. For

example I/O routines, sorting procedures,

math libraries, run-time libraries, and etc.

In addition to the five functional components described

above, there are two adjustment factors that need to be

considered in Function Point Analysis: Functional

Complexity and Value Adjustment Factor.

4.2 The Functional Complexity
The first adjustment factor considers the Functional

Complexity for each unique functional component.

Functional Complexity is determined based on the

combination of data groupings and data elements of a

particular function and can be rated as low, average or high

complexity. Each of the five functional components has its

own unique complexity matrix as shown in Table 2 [1][6].

For example, for External Input Functions, the complexity

factors are: Low=3, Average=4, and High = 6.

Table 2: Steps of Calculating Function Points

Type of

Component

Complexity of Components

Low Medium High

External Inputs _x 3 = _ _x 4 = _ _ x 6 = _

External Outputs _x 4 = _ _x 5 = _ _ x 7 = _

External Inquiries _x 3 = _ _x 4 = _ _ x 6 = _

Internal Logical

Files

_x 7 = _ _x 10 =_ _ x 15 = _

External Logical

files

x 5 = _x 7 = _ _ x 10 = _

 Total Unadjusted Function Points

(UFP)

 Multiplied Value Adjustment Factor

(MVA)

 Total Adjusted Function Points (AFP)

International Journal of Research in Business and Technology

Volume 6 No. 3 June 2015

©
TechMind Research Society 860 | P a g e

4.3 Calculating the Unadjusted Function Points
After the components or functionalities have been

classified as one of the five major components, a ranking

of low, average or high is assigned for each component.

Refer to Table 2. The following steps can be used to

calculate the size of a project as Unadjusted Function

Points (UFP):

 Count or estimate all the occurrences of each type

of functional component.

 Assign each occurrence a complexity weight.

 Multiply each occurrence by its complexity

weight, and total the results to obtain a function

count for each component.

 Add up all the function points for all five

functionalities or components.

The main screen of our user interface used to calculate the

Total Number of Unadjusted Function Points is shown in

Figure-2. As we enter the number of components in each

of the five functional areas with various complexities, the

total unadjusted functional point is automatically

calculated.

Figure-2: Main Screen - Calculation of Unadjusted and

Adjusted Functions Points

4.4 The Value Adjustment Factor
The Unadjusted Function Point count is multiplied by the

second adjustment factor called the Value Adjustment

Factor. This factor considers the system's technical and

operational characteristics and is calculated by answering

14 questions as shown in Table 3.

Table 3: Fourteen General Characteristics of a System

General System

Characteristic Brief Description

Data

Communications

The data and control information used

in the application are sent or received

over communication network.

Distributed Data

Processing

Distributed data or processing

functions required by the application.

Performance

Application performance objectives,

stated or approved by the user, in

either response or throughput,

influencing the design, development,

installation and support.

Heavily Used

Configuration

A heavily used operational

configuration, requiring special design

considerations.

Transaction Rate

The transaction rate is high and

influences the design, development,

installation and support of the

application.

On-line Data

Entry

On-line data entry and control

information functions are required by

the application.

End-User

Efficiency

The on-line functions provided

emphasize a design for end-user

efficiency.

On-line Update
The application provides on-line

updates to the internal logical files.

Complex

Processing

 Complex processing is a

characteristic of the application

requiring multiple data access and

manipulation.

Reusability

The application and the code is

designed, developed and supported to

be usable for other applications.

Installation Ease

An application can be easy to convert

and install. A conversion and

installation plan or tools are provided

to test the application.

Operational Ease

Operational ease can be like effective

start-up, backup and recovery

procedures of the application.

Multiple Sites

The application has been specifically

designed, developed and supported to

be installed at multiple sites of an

organization.

Facilitate Change

The application has been specifically

designed, developed that facilitate

change.

The 14 General System Characteristics is rated on the scale

of 0 (not important) to 5 (very important) and summed

[1][6]:

 ∑

International Journal of Research in Business and Technology

Volume 6 No. 3 June 2015

©
TechMind Research Society 861 | P a g e

A Complexity Factor, C is then calculated using the

formula: C = (0.65 + 0.01 x N).

Figure 3 illustrates the calculation of Complexity Factor

using a simple scale for each of the 14 system

characteristics – ranging from 0 to 50 for simplicity (which

equivalents to 0 – 5). This screen is accessed from a button

titled Calculate MVA Factor on the main screen as

shown in Figure-2 After the calculation of the Complexity

Factor, it can be closed and the result can be entered on the

main screen in the appropriate text box next to the above

mentioned button as shown in Figure-2.

4.5 Calculating the Adjusted Function Points
The Adjusted Function Point (AFP) Count is obtained by

multiplying the complexity factor and the Unadjusted

Function Point (UFP): AFP = UFP * C, as can be obtained

by pressing the Calculate button as shown on the Main

Screen in Figure-2.

Figure 3: Calculation of Value Adjustment Factor using 14

System Characteristics

4.6 Calculating the Lines of Code
Once we know the adjusted functions points, the lines of

code can be calculated depending on the programming

language used. Jones[15] provided a conversion factor

from Function point to lines of codes for various languages

as shown in Table-4 [1][6]. For example, in Visual Basic

language one function points will yield 30 lines of code. In

our simple software, this step is performed by pressing the

Next Step button on the Main Screen as shown in Figure 2

and selecting a programming language in the third screen

as shown in Figure 4.

Table 4: Conversion of Function Point to Lines of Code

in Various Languages

Language Approximate Number of Lines of

Code per Function Point

C 130

COBOL 110

Java 55

C++ 50

Turbo Pascal 50

Visual Basic 30

Power Builder 15

HTML 15

Excel, Access

Packages

10-40

Figure 4: Calculation of Effort, Time and Staff using a

Particular Language

4.7 Calculating the Effort, Time and Staff
Once the numbers of lines of code (LOC) are estimated,

effort, time and staff required can be estimated using

COCOMO Model [11]. As it was mentioned before,

COCOMO computes software development effort as a

function of program size, and program size is expressed is

estimated in thousands of source lines of code (KLOC).

For small to moderate-size projects, effort can be

calculated as [1]:

Effort (person-months) = 1.4 x KLOC.

Once the effort is estimated, scheduled time for the project

can be calculated using the formula:

Time (months) = 3.0 x (person-months)
1/3

.

The estimated number of staff needed to complete the

project is calculated as: Effort/Time. Figure 4 illustrates

the calculation of all three values using our interface.

Once we have an understanding of these three project

metrics at the early stage of the software development life

cycle, we can use other tools like WBS along with the

PERT or Gantt chart to break the project into multiple

tasks and create a baseline schedule for the project.

5. CONCLUSION

Software size estimation is a crucial input for the cost

estimation process at the early stage of its developmental

life cycle. Many software projects fail due to poor or

International Journal of Research in Business and Technology

Volume 6 No. 3 June 2015

©
TechMind Research Society 862 | P a g e

inaccurate size estimation. Accurate and early estimation

requires proper identification of the problem domain,

including functional size and complexity, and then

application of proper techniques to estimate the size. We

have discussed four different models or techniques that are

found to be practical in estimating software size and other

metrics during the various stages of its developmental life

cycle. We have also discussed the pros and cons of these

models. Each method provides different levels of details

and accuracy. We thus mapped the applicability of each of

these models with the various phases of the software

development life cycle. We have proposed that a project

manager should use the industry standard method towards

the end of the planning phase, followed by the Functional

Decomposition or WBS at the beginning of the Analysis

phase. During the middle of the Analysis phase, one

should use the Function Point Analysis along with the

COCOMO model to obtain an accurate estimation of the

software metrics. And this latter methods should be used

repeatedly or as necessary during the rest of the

developmental life cycle to help with the monitoring and

controlling of the project.

We have also elaborated the steps of Function Point

Analysis and COCOMO Model, and developed a simple

user interface that can be repeatedly used by a project

manager to calculate the software size in terms of effort,

scheduled time, and staff needed during the major stages

of its developmental life cycle. A simple user interface can

help automate the estimation process, compare the results

with the actual work progress, and adjust the schedule as

necessary.

6. REFERENCES

[1] A. Dennis, B. H. Wixom, and R. M. Roth,

Systems Analysis & Design, Publisher: John

Wiley & Sons, Inc., Hoboken, NJ (2009).

[2] Bill Meacham, “Estimating Software Size,”

http://www.bmeacham.com/Estimating/Estimatin

g.htm. Accessed February 1, 2015.

[3] M. A. Rob, “Project Failures in Small

Companies,” IEEE Software,

November/December issue, pp. 94-95 (2003).

[4] Hareton Leung, “Software Cost Estimation,”

https://www.st.cs.uni-saarland.de/edu/empirical-

se/2006/PDFs/leung.pdf. Accesses February 15,

2015.

[5] B. Boehm, C. Abts, and S. Chulani, “Software

Development Cost Estimation Approaches – A

Survey,” Annals of Software Engineering, Vol.

10, pp. 177-205 (2000).

[6] R. S. Pressman, Software Engineering: A

Practitioner’s Approach, McGraw-Hill

Publishing (2014).

[7] M. Jorgensen and M. Shepperd, “A Systematic

Review of Software Development Cost

Estimation Studies,” IEEE Transactions on

Software Engineering, Vol. 33, No. 1, pp. 33-53

(2007).

[8] G. B. Shelly and H. J. Rosenblatt, Systems

Analysis & Design, Course Technology (2013).

[9] The Delphi Method: Techniques and

Applications, edited by Harold A. Linstone and

Murray Turoff (2002).

[10] N. Sökmen, “Functional Decomposition Based

Effort Estimation Model for Software-Intensive

Systems,” International Journal of Computer,

Information, Systems and Control Engineering,

Vol. 8 No. 9, pp. 1505-1509 (2014).

[11] B. Boehm, Software Engineering Economics,

Prentice-Hall Publishers, Englewood Cliffs, NJ,

(1981).

[12] A. J. Albrecht, “Measuring Application

Development Productivity,” IBM Application

Development Symposium, pp. 83-92 (1979).

[13] A.J. Albrecht, and J. E. Gaffney, “Software

Function, Source Lines of Code, and

Development Effort Prediction: A Software

Science Validation,” IEEE Trans. On Software

Engineering, Vol. 9. No. 6, pp. 639-648 (1983).

[14] J. Desharnais and A. Abran, “Approximation

Techniques for Measuring Function Points,”

Proceedings of the 13th international workshop

on software measurement (IWSM 2003), pp. 272-

286 (2003).

[15] C. Jones, Estimating Software Costs, McGraw-

Hill Publishing (1998).

http://www.bmeacham.com/Estimating/Estimating.htm
http://www.bmeacham.com/Estimating/Estimating.htm
https://www.st.cs.uni-saarland.de/edu/empirical-se/2006/PDFs/leung.pdf
https://www.st.cs.uni-saarland.de/edu/empirical-se/2006/PDFs/leung.pdf

	1. INTRODUCTION
	2. AN OVERVIEW OF PRACTICAL ESTIMATION MODELS
	3. Mapping the Estimation Models with the Software Developmental Life Cycle
	4. Development of a User Interface to Estimate Software Size
	4.1 The Five Major Functional Components of a System
	4.2 The Functional Complexity
	4.3 Calculating the Unadjusted Function Points

	4.4 The Value Adjustment Factor
	4.5 Calculating the Adjusted Function Points
	4.6 Calculating the Lines of Code
	4.7 Calculating the Effort, Time and Staff

	5. CONCLUSION
	6. REFERENCES

