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Abstract- Unified statistics theory by MCMC is considered. A new proposed algorithm is presented  to obtain surely 

empirical analysis conclusions in order to turn to surely theoretical analysis results about the behavior of any general linear 

or nonlinear programming problem in order to introduce a complete framework and to solve any too large dimensional 

deterministic and probabilistic (the grouping data, both continuous and discrete)  linear or nonlinear programming problems 

by the proposed algorithm that has two obvious criteria towards the second resounding success of unified statistics theory by 

MCMC. 
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1. INTRODUCTION 

Unified statistics theory by MCMC has been proposed by 

Abou El-Enien [1]. 

 Unique chromosomes by simple random sampling without 

replacement theorem for any objective real valued function 

of n - variables of the form 1 2( , , , )nf x x x ,  where 

i i ia x b   for  1,2, ,i n  within the framework 

of unified statistics theory by MCMC has been proposed 

by Abou El-Enien and Khalil [2]. 

There is no known method of determining the global 

maximum (or  minimum) to the general nonlinear 

programming problem. Only if the objective function and 

the constraints satisfy certain properties, the global 

optimum can sometimes be found. Several algorithms 

were developed for unconstrained and constrained 

problems [4]. 

Despite the active research and progress in global 

optimization in recent years [3], it is probably fair to say 

that no efficient solution  procedure is in sight for the 

general nonlinear problems [4]. 

The rest of the paper is organized as follows. In Section 2, 

we give the formulation of the problem. In Section 3, we 

state the main result. Then in Section 4, the proof of the 

main result is given in five steps. In Section 5, we propose 

the algorithm. In Section 6, we give numerical example. In 

Section 7, we give some concluding remarks. 

2. FORMULATION OF THE PROBLEM 

In this paper, we consider a problem, namely: Why unified 

statistics theory by MCMC towards linear and nonlinear 

programming problems ?. 

Throughout this paper, we consider any objective real 

valued function (linear or nonlinear) of n - variables 

1 2( , , , )nf x x x ,  where i i ia x b   for  

1,2, ,i n  are domains of each variable ix  and  ia

and  ib are real numbers: 

0u   equations: 

1 2( , , , )i nq x x x  = 0 (linear or nonlinear), 

  0, ,  ,i u          (I) 

and  0m u  inequalities:  

1 2( , , , ) 0i nq x x x   (linear or nonlinear), 

1,.......,i u m  .       (II) 

Proposition 2.1. We restrict an arbitrary uncountable set  

S = { i i ia x b   for  1,2, ,i n } to be a subset 

of n -space R
n
  as a sample space, restrict an arbitrary 

countable set T to be set of all 1 2( , , , )nx x x  in  S = 

{ i i ia x b  } for which P 1 2( , , , )nx x x  > 0 as a 

sample space (see [5]). 

Proposition 2.2. We divide each interval i i ia x b  , 

1,2, ,i n  into k  (k  is a different optional integer 

number for each interval i i ia x b  ) subintervals 

i i ia x c  , 1i i ic x d  , ……, 1i k iw x y   , 

i k iy x b   and ic , id ,……, iw and iy  (the new 

population) are optional real numbers, list the possible 

simple random samples without replacement of n   ( n as 

n of S ) subintervals from this new population.(see [2]). 
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Proposition 2.3. We get unique chromosomes , 

k  bits {0,1}, for all simple random samples without 

replacement of n subintervals from the  new population,  

substitute  in (I) and (II), get subset of unique 

chromosomes, get globally optimum value(s), compare all 

globally optimum value(s) of all simple random samples 

without replacement of n  subintervals and  have the 

globally optimum value(s) of the real valued function.  

3. MAIN RESULT 

 In this section, we shall state the main theorem. 

Theorem 3.1. For any objective real valued function 

(linear or nonlinear) of n - variables 1 2( , , , )nf x x x ,  

where i i ia x b   for  1,2, ,i n  are domains of 

each variable ix  and  ia and  ib are real numbers: 

0u   equations: 

1 2( , , , )i nq x x x  = 0 (linear or nonlinear), 

  0, ,  ,i u   and  0m u  inequalities: 

1 2( , , , ) 0i nq x x x   (linear or nonlinear), 

1,.......,i u m  , the following holds: 

(1) A real valued function is one that contains all possible 

simple random samples without replacement of n   ( n as 

n of S ) subintervals from the  new population.  

(2) Every simple random sample without replacement of 

n  subintervals has unique chromosomes and subset of 

unique chromosomes, and has globally optimum value(s). 

(3) By comparing all globally optimum value(s) of all 

simple random samples without replacement of n  

subintervals. We have the globally optimum value(s) of the 

real valued function. 

4. PROOF OF THE MAIN RESULT 

In this section, we prove the main result in Theorem 3.1. 

We shall prove Theorem 3.1 in five steps. 

Proof of Theorem 3.1. Steps 1, 2 and 3 (see [2]). 

Step 4. We get unique chromosomes , k  bits 

{0,1}, for all simple random samples without replacement 

of n subintervals from the  new population, get subset of 

unique chromosomes, and get globally optimum value(s). 

Step 5. We compare all globally optimum value(s) of all 

simple random samples without replacement of n  

subintervals and  have the globally optimum value(s) of 

the real valued function. 

   On the basis of Steps 1-5, we complete the proof of 

Theorem 3.1.  

5. PROPOSED ALGORITHM 

We prepared programs by using MATLAB 7.5. We named 

the proposed algorithm subset of unique chromosomes by 

simple random sampling without replacement 

(SUCSRSR), the basic steps of the SUCSRSR algorithm 

are as follows: 

1. Divide each interval i i ia x b  , 

1,2, ,i n  into k subintervals, define the 

new population. 

2. List the possible simple random samples without 

replacement of n subintervals from this new 

population. For each random sample without 

replacement of n subintervals, do the following:  

a. Input number of bits k . 

b. Get unique chromosomes = 2k
. 

c. Get subset of unique chromosomes, 

and Get the globally optimum value(s). 

3. Compare all globally optimum value(s) of all 

simple random samples without replacement of 

n  subintervals and  have the globally optimum 

value(s) of the real valued function. 

6. NUMERICAL RESULTS AND 

DISCUSSION 

6.1. A numerical example 
Minimize 

5
2

1 2 3 4 5

1

( , ) 10.5 7.5 3.5 2.5 1.5 10 0.5 i

i

f x y x x x x x y x


          

Subject to : 

1 2 3 4 5

1 3

6 3 3 2 6.5,

10 10 20,

0 1,

0 .

i

x x x x x

x x y

x

y

    

  

 



 

Since 1 320 10 10y x x    and 0 1ix  , we 

restrict 0 20y  .  

By the SUCSRSR method, the globally optimum value   

= (0.000000, 1.000000, 0.000000, 0.999999, 1.000000, 

20.000000) for which the objective function is equal to 

 -213. 

7. DISCUSSION 

In this paper, the main result is the subset of unique 

chromosomes by simple random sampling without 

replacement theorem for any objective real valued function 

of n - variables. Using this, we propose subset of unique 

chromosomes by simple random sampling without 

replacement method to solve any too large dimensional 

deterministic and probabilistic linear or nonlinear 

programming problems toward two obvious criteria (speed 

and accuracy). 

REFERENCES 

[1] U. H. Abou El-Enien, A New Unified MCMC 

Methods Toward Unified Statistics Theory by 

MCMC, LAP, Germany, 2012.  

[2]  U. Abou El-Enien, M. Khalil, Why unified statistics 

theory by MCMC towards resounding success ?.,  

Indian Journal of Computer Science: Theory and 

( 2 )k

( 2 )k



International Journal of Research in Business and Technology 

Volume 4  No.3 June 2014 
 

©
TechMind Research, Canada          533 | P a g e  

Practical., GBS Publishers & Distributors (I), 1(2013), 

no.1, pp. 13-16. 

[3] C. A. Floudas and P. M. Pardalos, Recent Advances in 

Global Optimization, Princeton University Press, 

Princeton, N J, 1992. 

[4] Z. Michalewicz, Genetic Algorithms + Data Structures 

= Evolution  Programs, Springer, 1996. 
[5] T. Apostol, Calculus, vol.II, John Wiley, Inc., 1969. 
 


