
International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 489 | P a g e

Towards a Dynamic Software Product Line:

Analysis of the Background and State of the Art

Chiraz BOUZID
1
, Naoufel KRAIEM

2
, Zuhoor Al Khanjari

3

1
RIADI Lab, ENSI, Campus of Manouba Manouba, Tunisia

2,3
 Department of Computer Science, Sultan Qaboos University, Muscat, Oman

1
Chiraz.bouzid@yahoo.fr
2
naoufel@squ.edu.om,
3
zuhoor@squ.edu.om

Abstract- Dynamic software adaptability is one of the central features leveraged by autonomic computing. However,

developing software that changes its behavior at run time in response to dynamically varying user needs and resource

constraints is a challenging task. With the emergence of mobile and service oriented computing, such variation is becoming

increasingly common, and the need for adaptivity is increasing accordingly. Software product line engineering has proved

itself as an efficient way to deal with varying user needs and resource constraints. In this paper, we present a study of

different approaches for design and runtime adaptation that can be used in the context of Dynamic Software Product Lines

(DSPLs). We propose a classification and a comparison of existing work. Afterwards, we refine our proposal by concretizing

the research goals that fulfill the gaps current approaches present.

Keywords- Dynamic Software Adaptability; Software Product Line Engineering; Dynamic Software Product Line.

1. INTRODUCTION

Dynamic Software Product Lines (DSPL) intends to

face several challenges related to the continuous changes

in software at design and execution. More and more, these

modifications become the rule rather than the exception.

At design time, developers have to produce a family of

software products instead of individual applications for

solving one problem. They usually specify the software

using a composition of concerns in order to obtain a

complete software definition. Such a separation and

composition of concerns facilitates either the definition of

successive versions in the time, or different variants for

different target platforms or user requirements. Moreover,

software can also evolve at runtime in order to

dynamically consider new requirements or context

changes. This last change could be managed by self-

adaptive platforms. These platforms enable software

systems to add and remove some of its elements at

runtime.

The term DSPL was introduced in 2008 by

Hallsteinsen et al. [12]. In [12] authors introduce a new

trend in research that aims at using the principles of

traditional SPL to build products that can be adapted at

runtime depending on the requirements of the users and the

conditions of the environment. Because of its novelty,

literature is yet scarce with regard to concrete DSPL

approaches. Nevertheless, DSPL challenges can be faced

using already mature approaches in software engineering,

especially when dealing with software adaptation (e.g.

AOM, service and component-based runtime platforms,

MDE, ECA rules). This article aims at studying different

approaches for design and runtime adaptation that can be

used in the context of DSPLs. We propose a classification

and a comparison of existing work. Afterwards, we refine

our proposal by concretizing the research goals that fulfill

the gaps current approaches present.

The remainder of this paper is organized as follows. In

Section 2 we discuss the adaptation and present the two

main types of adaptation considered for this survey:

adaptation at design time, and adaptation at runtime. In

Section 3 we elaborate on the criteria and classification as

well as the description of the approaches surveyed. We

discuss additional criteria for the comparison that,

although not present in all the works surveyed, is worth

mention for the relevance in the context of DSPL. At the

end of the section we present a summary of the results.

Next, in Section 4 we present the research goals to better

position the contributions of our work. Sub sections A and

B of Section 4 elaborate on the need for a unification of

adaptations and the challenges of defining and

implementing such unification. Finally we conclude in

Section 5 with a brief summary of the survey presented in

the chapter.

2. DSPL AND SOFTWARE ADAPTATION

DSPLs focus on the development of software products

that can be adapted at runtime depending on the

requirements of the users and the conditions of the

environment. Indeed with the increasing need of self-

managed systems and the emergence of multi-scale

environments, software developers need to cope with

mailto:Chiraz.bouzid@yahoo.fr
mailto:naoufel@squ.edu.om
mailto:zuhoor@squ.edu.om

International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 490 | P a g e

variability and adaptations. Software must be developed to

be adapted and reconfigured automatically on

heterogeneous platforms in accordance with the

unavoidable evolution of information and communication

technologies. Therefore, the adaptation is now considered

as a first-class problem that must be taken into account

throughout the software life-cycle. In order to position our

work, we start by presenting the definition of adaptation,

and its implications at design time and at runtime

respectively.

2.1 Adaptation
Software adaptation is strongly related to software

evolution. Both processes deal with the modification of an

application. However, as presented on [22, 23], such

processes are complementary with regard to the focus and

tasks that they involve. A software evolution is understood

as the modifications done to a system over time. The

adaptation is more related to the processes needed to

modify an application including: detecting events and

information that may lead to a change, planning a set of

changes, and performing those changes on the application.

A well-known reference of this model is the one presented

by IBM [13] known as MAPE for the phases it includes:

Monitor, Analyze, Plan, and Execute. The IBM model has

been defined for control loops at runtime. However,

software can be adapted either at the design phase or at the

runtime phase. For each phase, dedicated technologies are

used to specify and realize the adaptations.

2.2 Static and Dynamic Adaptation
Another characteristic of adaptation is the moment of

time in which the business code is adapted. Literature in

general refers to two types of adaptation: static and

dynamic. Static adaptation refers to the changes that are

performed during development, compile or load time.

During the development for instance, design languages

provide adaptation mechanisms such as inheritance or

composition. A slightly different approach is to adapt the

application at compile time. One of the better-known

examples that allow this type of adaptation is AspectJ [15],

an aspect-orientation extension of java. With AspectJ,

crosscutting features can be defined and woven with

original business code at compile time. Load-time

adaptation is also considered as a way of static adaptation.

This kind of adaptation consists in waiting until the

loading of an application to decide which components are

employed. For example, as explained in [20], when an

application requests the loading of a new component,

decision logic might select from a list of components with

different capabilities or implementation, choosing the one

that most closely matches current needs.

Dynamic adaptation refers to changes that happen

while the applications are being executed. This means that

elements of the application such as algorithms or structures

can be replaced or modified during execution without

necessarily having to halt and restart the application [20].

Typically, at runtime, applications are based on platforms

that support dynamic adaptation. For instance, certain

CBSE platforms provide APIs to dynamically change

connections between running components.

2.3 Adaptation at design time
In our work we intend to face the challenges for the

adaptations at design time. From an SPL perspective, it

does not matter if the adaptation takes place at the level of

models or by modifying the source code because in both

cases, the adaptations are part of the derivation of a

product from a user-defined configuration. For this reason

we group the static adaptations techniques under the same

SPL process of application engineering at design time. We

consider an adaptation at design time as any modification

performed over an application that starts and ends before

the application has been deployed ant its execution has

actually taken place.

2.4 Adaptation at runtime
In a similar way as for the adaptation at design time, we

group the different approaches for achieving dynamic

adaptations under the same process of application

engineering at runtime. We consider that independently

from the approach, all shares the same objective of

changing the applications dynamically. Consequently, we

define the notion of adaptation at runtime as any

modification of the application that takes place during its

execution.

3. DESIGN AND RUNTIME

ADAPTATION: APPROACHES AND

MECHANISMS

In this section, we survey different approaches that are

related to the definition and implementation of SPLs for

deriving adaptive systems. We classify the approaches

based on the type of adaptation they support. There are

three main groups: (1) those who specifically deal with

design time adaptations, those who specifically deal with

runtime adaptations, and (3) those who try to cover both

processes at the same time.

3.1 Design time adaptation approaches

This category includes all the approaches where the

adaptation takes place before the deployment of the

software artifacts that constitute the application. Usually,

approaches in this category present a complete derivation

process that uses variability and variability constraints for

product derivation, as well as mappings and code

generation processes for building the concrete artifacts that

constitute the software products.

Design time criteria

Each approach in the design time category is classified

regarding two main criteria: (1) the mechanisms used, and

(2) the scope of the adaptation. These criteria are detailed

in Table 1.

Arboleda and al. [2] propose a Software Product Line

based on Models. Their approach uses variability and

constraint models in combination with AOP to derive

products that integrate different concerns into a single

product. All the operations to derive a product occur at

International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 491 | P a g e

design time (merging models and code generation).

Regarding the scope of the adaptation, this approach

emphasizes on the adaptation at the level of models and

code.

Table 1: Comparison criteria for design time

approaches.

Criteria Definition

Mechanisms The mechanisms used for defining

and implementing the adaptation.

This includes but is not limited to

models and model transformations,

aspect oriented modeling and model

merging, and feature diagrams.

AOM, AOP AOP and AOM are also commonly

used across the different approaches

as a way to achieve modularization

and adaptation based on the

composition of multiple modules.

Aspects can be combined with

feature diagrams as a way to deal

with variability and constraints

among several products in software

product lines.

MDE MDE is widely accepted in design

adaptations. One common strategy

among several approaches is the use

of model transformations and code

generation to automate the

development of applications

Variability

Management

Several approaches are based on

SPL and variability management to

configure and build families of

similar products. Adaptation is

achieved by switching across

several product configurations.

Typically, variability management is

combined with other mechanisms

like models or aspect oriented

programming.

Scope By scope we mean the granularity of

the adaptation, it varies from fine

grained granularity, as modifying

methods and parameters, to coarse

grained granularity, when doing

architectural modifications like

changing component bindings.

Model Several approaches use models to

represent applications at both design

(most MDA approaches) and

runtime (models at runtime). We say

that the scope of the adaptation is a

model if the elements that get

modified because of the adaptation

are models.

Architecture For approaches where applications

are based on architectural paradigms

like components, services, processes

(e.g. CBSE, SOA, BPEL), we

evaluate if the adaptation has an

impact on the structure or behavior

of the elements that constitute the

architecture of the application.

Code Finally, we say that the code is the

scope of the adaptation when parts

of the source code (e.g. classes,

methods, attributes) implementing

the applications are impacted by the

adaptation. For example, AOP

approaches define explicit pointcuts

on the source code, to extend them

with added functionality.

The adaptation modifies the models used to represent

the product. Besides, since they use AOP, source code is

also the target of modifications during the derivation

process. In terms of mechanisms employed, the approach

defines the variability of the family of products, and uses

MDE to define intermediate models and AOP to compose

model transformation rules.

Clarke [8] discusses about composition mechanisms

needed in particular in the UML metamodel to align

requirements and objects. She proposes to add a specific

composition relationship among elements, so that,

common elements in different models (regarding the same

requirements) can be identified and composed. Using this

composition relationship, she discusses two ways of

performing composition: merging and override. As in the

previous case, the composition takes place at design time,

among the different UML models. Since the result of the

composition proposed are new UML models, the scope of

this approach are the models. Regarding the mechanisms

used, the approach uses MDE for representing the models

and for defining the composition mechanisms that

correspond to the same requirements.

Czarnecki and Antkiewicz [7] propose a mapping from

feature models to application models. The idea is to allow

the modeler to view directly the assets related to each

feature and estimate the impact of selecting/deselecting a

given variant. With a particular configuration, a template

instance is obtained which represents the selection of the

modeler. A template corresponds to design elements like

UML diagrams. The approach focuses on design-time

derivation since the results of the configuration

corresponds to a UML model. Regarding the scope, the

mapping of feature models to application models implies

that the models and the architecture of the application are

modified. Indeed, authors deal with both models and

templates at the same time. While models are used mainly

to represent variability, templates are used to represent

design elements like UML diagrams which define the

architecture of the applications being derived. The

mechanisms used by the authors combine mainly MDE for

International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 492 | P a g e

modeling the applications and variability management to

map such models to features.

Kienzle and al. [14] define aspects over UML

diagrams. They use class diagrams for structure modeling,

as well as sequence and state diagrams for behavior

modeling. Afterwards, their approach proposes a weaving

that composes such models, including dependency chains

among them. Since the result of the weaving is a new

model that can be used for simulation or code generation

the approach is centered on design-time adaptation. The

scope of the approach is the models that get composed

thanks to the weaving of the aspects defined. The

mechanisms used by Kienzle et. al. combine AOM for

defining the aspects, and MDE for the creation of class,

sequence, and state diagrams.

Perrouin and al. [25] propose a model-based approach

at design time for product derivation in SPLs. They start

with a feature model, and for each feature, there is a partial

model. A merging operation takes place in order to merge

the partial models of the different features selected for a

particular configuration. The adaptation target corresponds

to the models, since the merging that combines different

features results in a merged model. Regarding the

mechanisms, Perrouin et. al. combine variability for

defining the feature model with MDE for defining the

models and the merging operation.

Reddy and al. [27] present an aspect based approach

for model composition. They introduce a base algorithm

and different directives. The directives are used when the

composition algorithm yields to incorrect results.

Directives modify default composition rules, so that

developers have finer-grained control on how the elements

of the models are composed. Their approach focuses on

aspect models and design composition. The adaptation

scope in the approach are the models obtained after

modifying the composition rules. The approach is mainly

based on AOM and MDE for defining the elements to

compose, the base composition algorithm, and the

directives that modify the rules of such algorithm for the

cases where there is a conflict.

Sánchez and al. [28] define a language for composition

of assets in SPL called VLM4. This language can be used

to generate model transformation rules that automate the

derivation process at design time. The approach aims at

creating model transformations that in the end produce as a

result a model that represents the SPL configuration.

Authors use variability for defining the assets to compose

and MDE transformations that are generated from their

own language.

Voelter and Groher [30] propose a complete model

driven SPL where aspects are used to realize variability.

AOM and AOP are both used to introduce variability at the

level of models, and later at the level of generated code.

The scope of this approach covers both the models when

using AOM, and code when the adaptation takes place

through AOP.

Wagelaar [31] proposes a way to take modularization

to the level of rule-based model transformations. He

proposes a composition of rules so that different

independent transformations can be combined and scale up

to a larger model transformation. Since combining

transformation rules is equivalent to modify the model that

results from executing them, we consider that the scope of

the approach are the models. Wagelaar focuses on MDE

techniques and particularly in the combination of model to

model transformations.

Van der Storm [11] proposes a formal model to bridge

domain and solution models in product line engineering.

His approach is based on dependency graphs that map

concepts from feature diagrams to software artifacts. As

with the previous approaches, the domain and solution

models are used at design time during the development

process of the applications. The approach by Van der

Storm has also the models as its scope, since its main goal

is to define a formal model which allows adaptation based

on feature selection (domain problem) into the software

artifacts (solution). Regarding the mechanisms, Van der

Storm approach is based on variability management and

SPL techniques.

Finally, Lee and al. [16] work on product derivation by

means of an aspect oriented solution to the problem of

feature dependencies. Aspects are used as a way to

separate feature dependencies from feature

implementations. This approach attacks directly the source

code of the applications being implemented, by defining

aspects that are woven depending on the feature

dependencies. Aspects are combined with feature diagrams

as a way to deal with variability and constraints among

several products in software product lines.

Summary of design time approaches

As we have shown, work on adaptation at design time

is prolific. Different scopes are defined as well as different

mechanisms for achieving such adaptations. The results of

this first group are summarized in Table 2. The first

column contains the reference of the work. We have two

main columns for Scope, and Mechanisms. Each main

column contains their respective criteria subgroups.

Additionally, we have added an extra column called

Domain to indicate, if available, the kind of domain of

application (e.g., mobile computing, embedded systems,

smart houses, and multimedia). We use a check mark (X)

if the approach proposes solutions or deals with the

different criteria, and a dash (–) in the opposite case.

From this first group of approaches that focus on design

time, we can observe that most of them include complete

derivation processes by defining the variability of the

products at early stages of the development. All of them

can be used (at least partially) to produce families of

products from different product configurations. They

combine variability management with concrete techniques

for software development like MDE in the case of a PIM

to PSM transformation chain, AOM when modularization

and composition are employed at the level of models, or

AOP when aspects are woven directly to the source code.

However, due to the lack of support for dynamic

adaptations, these approaches only face a subset of the

International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 493 | P a g e

challenges for DSPLs. Concretely, there is no support for

adaptations at runtime. This implies that the configuration

defined for each product at design time does not exist

when the product is executed. We consider that a complete

approach for DSPL should not only deal with the design

adaptations this group of approaches support, but also with

the requirements for adaptations during the execution of

the applications.

Table2: Summary of the design time adaptation approaches.

Reference

Scope Mechanism Domain

M
o

d
el

A
rc

h
it

ec
tu

re

C
o

d
e

A
O

M

A
O

P

M
D

E

S
P

L
 V

a
ri

a
b

il
it

y

M
o

b
il

e
C

o
m

p
u

ti
n

g

E
m

b
e
d

d
ed

sy

st
em

s

S
m

a
rt

 H
o

u
se

M
u

lt
im

e
d

ia

Arboleda and al. ─ X X X X X X X ─ X ─

Clark X ─ ─ ─ ─ X ─ ─ ─ ─ ─

Czarnecki and Antkiewiez X X ─ ─ ─ X X ─ ─ ─ ─

Kienzle and al. X ─ ─ X ─ X ─ ─ ─ ─ ─

Perrouin and al. X ─ ─ ─ ─ X X ─ ─ ─ ─

Reddy and al. X ─ ─ X ─ ─ ─ ─ ─ ─ ─

Sanchez and al. X ─ ─ ─ ─ X X ─ ─ X ─

Voelter and Groher X ─ X X X X X ─ ─ X ─

Wagelaar X ─ ─ ─ ─ X ─ ─ ─ ─ ─

Van der Storm X ─ ─ ─ ─ X X ─ ─ ─ ─

Lee and al. ─ ─ X ─ X ─ X ─ ─ ─ ─

3.2 Runtime adaptation approaches
This category includes all the approaches where the

adaptation takes place during the execution of the

application. Usually, approaches in this category aim at

defining adaptation rules and at taking advantage of

technologies that allow for runtime modifications of the

applications.

Runtime reconfigurations are performed in different

ways and using a variety of tools (i.e., introspection and

intersection, meta object protocols, models at runtime,

runtime platforms based on services and/or components).

Runtime adaptation criteria

To properly identify the different mechanisms used in

this category, we have slightly modified the criteria. In

addition to the elements previously identified for the

design time approaches that remain valid, we have added

the ECA rules in the Mechanisms criteria for approaches

that are based on rules, and conditions. Additionally, we

have added a new criterion called Context Awareness, that

is used to classify the approaches that use context

information to trigger the process of adaptation

dynamically. Table 3 details the new criteria for runtime

approaches.

Table 3: Comparison criteria for runtime approaches.

Criteria Definition

Mechanisms In the same way as for the design

adaptations, the runtime mechanisms

cover the different techniques and

approaches used to achieve the adaptation.

ECA Rules

Event condition-action (ECA) rules are

mechanisms employed when it is

necessary to trigger a particular action in

response to events. This type of

mechanisms are mainly used to model an

adaptation in response to changes in the

execution context.

Context

Awareness

Context awareness refers to the capability

of the systems to react to changes in their

environment [5, 34]. Context information

refers to all the information available in

the environment when applications are

being executed, and that may affect the

structure or behavior of them. Examples

of context information include location,

temperature, hardware constraints, user

preferences and personal information,

International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 494 | P a g e

time, etc. For this criteria we identify the

approaches that effectively use context

information as input in the decision

making process particularly in the case of

runtime adaptations.

In [3] Batista et al. introduce their framework called

PLASTIK. It allows both the definition of runtime

components as well as their dynamic reconfiguration. It is

a combination of an ADL for describing architectures, with

a reflective component model. Runtime adaptation is

achieved through reconfigurations that can be of two

types: programmed reconfigurations, which are foreseen at

design time, and ad-hoc reconfigurations, which cannot be

foreseen at design and that are controlled with the help of

invariants in the specification of the system. PLASTIK

uses models at runtime together with ECA rules for

achieving the adaptation. The component-based platform

called OpenCOM and the ADL with extensions allow

developers to define ECA-like conditions on which

reconfiguration actions take place.

In [6], Bencomo et al. propose software product lines

for adaptive systems. In their approach, a complete

specification of the context and supported changes has to

be provided thanks to a state machine. Each state then

represents a particular variant of the system and transitions

between states define dynamic adaptations that are

triggered by events corresponding to context changes. The

work of Bencomo et al. defines reconfiguration policies

that take the form of on-event-do-action, where actions are

changes to component configurations and events represent

the notifications arriving from the environment and

processed by a context engine.

David and Ledoux [9] present SAFRAN, an extension

of the FRACTAL component model in order to modularize

dynamic adaptations using aspects. The aspects represent

reactive adaptation policies which trigger reconfigurations

based on evolutions of the context. The adaptation is

defined using FScript, a language developed to write

Fractal component reconfigurations. They useWildCAT

[35] to detect external events. WildCAT models context as

a set of domains. Each domain represents a particular

aspect of the context information. The information itself is

modeled as pairs (name, value) inside every domain. The

information changes over time and these changes generate

events, which are used by SAFRAN to trigger the

adaptation process.

Pessemier et al. [26] introduce the Fractal Aspect

Components (FAC). FAC is a model for software

evolution that benefits from Aspect Oriented Software

Development (AOSD) and Component Based Software

Engineering (CBSE) [37]. In FAC, there can be aspect

components, which are regular Fractal components that

embody an advice code. The adaptation takes place by

adding or removing components (aspect or regular) to

running applications. The runtime reconfiguration is, as in

the previous case based on the support provided by the

FRACTAL component model. Since FAC is based on

Fractal components and use Fractal dynamic capabilities to

define adaptations at the architecture level, the scope of the

adaptation corresponds to the architecture of the

component-based application that gets modified through

FRACTAL reconfigurations.

Zhang and Cheng [33] introduce a model driven

process for the development of dynamic programs. Formal

models are created for the behavior based on states. They

separate adaptive from non-adaptive behavior in programs,

making the models easier to specify. Trinidad and al. [29]

propose a mapping from feature models onto component

models. Basically, for each feature, there is one component

who implements it. There is additionally a component

called the configurator which is in charge of creating the

bindings to form the desired architecture that represents a

particular feature configuration. The configurator acts at

runtime and is able to activate components linked to non-

core features. The approach focuses on the relationship of

features and software components. Adaptation takes place

thanks to a configurator component that modifies the

architecture of the applications components and bindings

at runtime.

Finally, Dinkelaker et al. [10] propose a dynamic

software product line using aspect models at runtime. They

use aspect models to define features and feature

constraints. Their approach mixes SPL principles of

product derivation with the notion of dynamic variability.

They distinguish static variability from dynamic

variability, and for the latter one, they use dynamic AOP

for the implementation. Their approach links what they

call dynamic features, representing late variation points in

an SPL, to dynamic aspects.

Summary of runtime adaptation approaches

Table 4 summarizes the approaches of the second

category. We have added the ECA rules criterion for the

mechanisms, and the context awareness. In the same way

as for the previous group, a check mark (X) indicates if the

approach proposes solutions or deals with the different

criteria, and a dash (–) in the opposite case.

In this second category we find approaches that offer

great support for dynamic adaptations. They are usually

based on platforms with reflective capabilities that they

use to modify applications at runtime. Some of the

approaches use context information and event rules to

trigger adaptations, whenever a context occurs. However,

such approaches do not offer support for design

adaptations. Their starting point is usually a set of

applications already developed (by hand in most cases),

and they are not interested on automating the development

process before the execution. A DSPL approach can take

advantage of the dynamic capabilities and runtime

adaptations offered by the approaches in this category.

Nevertheless, the lack of adaptations at design time, make

us consider that this second category of approaches are

only suitable to face a subset of the challenges for DSPLs.

They have to be complemented to offer support for the

initial development process that takes place before the

execution.

International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 495 | P a g e

Table 4: Summary of the runtime adaptation approaches.

Reference Scope Mechanism Context Domain

M
o

d
el

A
rc

h
it

ec
tu

re

C
o

d
e

A
O

M

A
O

P

M
D

E

S
P

L
 V

a
ri

a
b

il
it

y

E
C

A
 R

u
le

s

 M
o

b
il

e
C

o
m

p
u

ti
n

g

E
m

b
e
d

d
ed

 S
y

st
em

s

S
m

a
rt

 H
o

u
se

M
u

lt
im

ee
d

ia

Bastia and al. ─ X ─ ─ ─ X ─ X X X ─ ─ ─

Bencomo and al. ─ X ─ ─ ─ X ─ X X ─ ─ ─ ─

David and Ledoux ─ X ─ ─ X ─ ─ ─ X ─ ─ ─ ─

Pessemier and al. ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─

Zhang and Cheng X ─ ─ ─ X ─ ─ ─ X ─ ─ ─

Dinkelaker and al. ─ ─ ─ X ─ X ─ ─ ─ ─ ─ ─

Trinidad and al. ─ X ─ ─ ─ ─ X ─ ─ ─ X ─ X

3.3 Mixed adaptation approaches

In this category, we analyze a third group of

approaches that propose mixed solutions. Such approaches

include some of the characteristics we have found

separatedly in the two previous groups, but combined in

order to provide support for adaptations to be performed at

design time and at runtime.

Adaptation criteria

Since this category is a combination of the two

previous categories, we use the same criteria specified for

the previous groups.

In this category, we find the work by Bastida et al. [4].

The authors introduce an approach for context-aware

service composition. They propose a methodology of six

processes aimed at defining an executable model

composed of several services with a particular workflow,

which represents a set of variants chosen for several

variation points. Afterwards, the composition can take

place at runtime based on ECA rules, in order to connect to

new services. Regarding the mechanisms for runtime, the

authors use context information defined as a dynamic

property that may depend on an underlying protocol. The

property is used in a predicate which is expressed in their

particular ADL. This ADL associates a programmed

reconfiguration action to the property. This leads to

context-based reconfigurations that are triggered through a

change in the dynamic property.

Apel et al. [1] introduce the notion of Aspectual

Feature Modules. They aim at combining feature oriented

programming (FOP) and AOP to implement feature

models when required. Their approach uses classic feature

modules for non cross-cutting concerns and AOP for

special cases. Although not specified, their approach could

eventually use dynamic AOP, making adaptation possible

at both design and runtime. The scope of the adaptations in

this approach is the source code where aspects are woven.

Regarding the mechanisms, Apel et al. base their approach

on the combination of variability to build families of

similar products, and AOP for the cross-cutting concerns.

Lundesgaard and al. [17] propose an approach formed

by two parts: an MDA transformation chain for building

adaptive applications, and a middleware system to make

decisions about adaptation based on Quality of Service

(QoS) information. At runtime, the model is causally

connected with the application it represents. The

adaptation takes place by choosing the right configuration

by modifying the application model. Then, the application

absorbes the changes of the model. No details are given as

to how this last process actually takes place. The approach

uses QuAMobile, a context and QoS-aware middleware

that identifies and chooses the best variant configuration

for the current context and available resources. Such

middleware works as a set of plugins that can be plugged

in and out. In particular there is one plugin called Context

Manager in charge of managing context information.

In [18], the authors present K@RT, a framework for

dynamic product lines based on aspects and models. They

use models at runtime for dynamic variability and deal

with the combinatorial explosion. In [36] a close related

work presents the strategy for dynamic adaptation. Models

are kept at runtime as part of the application being

executed, then, the target configuration is calculated for

the current conditions of the executing environment.

Having both models, current and target model, a difference

is computed, and from this difference, a reconfiguration

script is generated that takes the current configuration to

the target configuration. Also from the same authors,

Morin et. al. [19] present an evolved version of this

approach when aspects are formed by advice, pointcut, and

International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 496 | P a g e

weaving directives. They use dynamic reconfigurations to

modify the model of the application, the architecture of the

application itself, and the code generated from the model.

With respect to the scope of these approaches, the main

element of the adaptation is the model. However, using the

models as starting point, they also introduce strategies for

source code generation. Regarding context awareness, in

[36] authors define an adaptation model which captures all

the information about the dynamic variability and

adaptation of their adaptive system. Among the elements

that conform to such a model, they include a context model

which is a minimal representation of the environment used

to define adaptation rules. In a similar way, in [19] authors

define aspect models which may include a context that

they describe as a slice of the environment. No further

details are given concerning the context management or

the frameworks used for context aggregation.

Phung-Khac [24] proposes the adaptive medium

approach for developing adaptive distributed applications.

His approach proposes a development process where

business logic is separated from the adaptation aspects of

the applications. The business logic is refined in different

configurations that are treated as different members of the

system family. Like this, the adaptive medium approach

extends the feature modeling method. On the other side,

the adaptation aspects define architectural models are and

in charge of adapting the business logic dynamically. In

his approach, the desired adaptive application is specified

at a high abstraction level and then is refined towards the

implementation level. For the runtime adaptation, the

approach uses FRACTAL software components. The

architectural models generated by the refinement process

are embedded into the adaptation control to perform the

reconfigurations. Finally, since the applications are

component-based, we consider that their adaptation scope

corresponds to the architecture of the applications that get

modified during the reconfigurations, and additionally, to

the generated code that is obtained from their refinement

process.

Finally, the project ECaesarJ [21] represents an

approach to have design and runtime adapatations based

on the programing language. ECaesarJ is an aspect

oriented language that is based in its predecessor CaesarJ

[3]. The language aims at facing the challenges of feature

decomposition. To do so, it improves modularity of object

oriented programming languages by providing extension

and composition mechanisms. At the core of ECaesarJ

there is the concept of virtual classes. A virtual class can

be redefined in subclasses by adding new methods fields

and inheritance relationships. This allows, for example, to

define features as extensions of other features. For the

composition of features, ECaesarJ supports mixings. It

represents a form of multiple inheritances when all

inherited declarations of virtual classes with the same

name are composed. ECaesarJ also offers support for

events and state machines. The events are used to represent

explicitly behavioral abstractions. An event is composed of

a source and destinations. Examples of such events include

implicit join points of the source code for example method

calls, attribute value changes, but can also be explicitly

defined by the programmer. The state machines are

supported in ECaesarJ to make it possible to organize the

event handling. Because it is based on CaesarJ, the

weaving of aspects takes place through several deployment

process which include design time and runtime

deployments. At design, the aspects are woven in a similar

way as in any AspectJ-based approach. At runtime, the

aspect which is defined as in java, can be instantiated at

any moment. However for the weaving to actually take

place the aspects deployment act as a wrapper that

intercepts the calls to the business objects to enrich them

with the advice code. Since the language is basically

focused on java code, their mechanisms include aspect

oriented techniques as well as direct code manipulation.

The scope of the adaptation achievable with ECaesarJ is

the business code itself that gets modularized and

composed by the aspects defined with the ECaesarJ

language.

Summary of mixed approaches

Table 5 summarizes the approaches of the third

category. The criteria are the same that we have used for

the runtime approaches. In the same way as before, a

check mark (X) indicates if the approach proposes

solutions or deals with the different criteria, and a dash (–)

in the opposite case.

This third category of approaches is the most

interesting one for the development of DSPLs. The

approaches in this category offer support for both design

and runtime adaptations. Some of them use variability

management and context information as well as models at

runtime, reflective platforms, or dynamic aspects that

allow them to have both source code manipulation

processes for the design adaptations and dynamic

reconfigurations for the runtime adaptations. Some of them

also use variability management for modularizing and

defining adaptations, and context information to define

concrete events at runtime for adaptations. There are other

approaches based on programming languages that focus on

modularity and propose constructs tailored for feature

decomposition.

However, for a complete DSPL, we consider that there

are still two main issues missing. First

of all, the approaches in this group do not offer a

complete development life cycle from feature modeling

and configuration to runtime adaptations. This means that

design and runtime adaptations are realized through

completely independent process that does not have many

elements in common. Moreover, to the best of our

knowledge, none of the approaches offers a unified

representation of adaptations. Assets used for building

applications are defined and treated in a different manner

than assets used to achieve reconfigurations dynamically.

International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 497 | P a g e

Table 5: Summary of mixed adaptation approaches.

Reference Scope Mechanism Context Domain

M
o

d
el

A
rc

h
it

ec
tu

re

C
o

d
e

A
O

M

A
O

P

M
D

E

S
P

L
 V

a
ri

a
b

il
it

y

E
C

A
 R

u
le

s

 M
o

b
il

e
C

o
m

p
u

ti
n

g

E
m

b
e
d

d
ed

 S
y

st
em

s

S
m

a
rt

 H
o

u
se

M
u

lt
im

e
d

ia

Bastida and al. ─ X ─ ─ ─ ─ ─ X X X ─ ─ ─

Lundesgaard and al. X ─ ─ X ─ X ─ ─ X ─ ─ ─ X

Morin, Barais and

Jezequel
X X ─ X ─ X ─ ─ X ─ ─ ─ ─

Morin and al. X X ─ X ─ X ─ ─ X X ─ ─ ─

Appel and al. ─ ─ X ─ X ─ X ─ ─ ─ ─ ─ ─

Phung-Khac ─ X X ─ ─ X X ─ ─ ─ ─ ─ ─

Ecaesar Project ─ ─ X ─ X ─ ─ ─ X ─ ─ ─ ─

3.4 Summary
We can now summarize the results of the approaches

reviewed with regard to the challenges they face and the

strengths and weaknesses of each group. In table 6 we

summarize the findings of each of the three categories

previously discussed. We have three main criteria. First,

we illustrate if the category support design time

adaptations, and if it uses variability management for the

derivation process. Second, we illustrate if the approach

support runtime adaptations, and if it uses context

information for the decision making. Finally, we add a last

criteria indicating if the approach offers a unified

representation of design and runtime adaptations. In the

next section, we further discuss the unification and revisit

the challenges for a complete DSPL approach that

successfully manages design time and runtime adaptations.

Table 6: Synthesis of approaches for DSPL.
Approach Design

Adaptatio

n

Variability Runtime

Adaptatio

n

Context

Awareness

Unified

Representa

tion

Focus on
Design and

Product
Derivation

Yes Yes No No No

Focus on

Runtime

Reconfiguratio
ns

No No Yes Yes/No No

Mixed

Approaches

Yes Yes/No Yes Yes/No No

4. RESEARCH GOALS

From the results of Table 6, we have concluded that the

main missing issue relates to the lack of unification

between adaptations at design time and adaptations at

runtime. For each one, dedicated technologies are used to

specify and realize the adaptations as it has been presented

in all of the categories previously reviewed. In addition,

both adaptation processes can be understood as the

modification of the product being derived by adding and/or

removing a certain group of features. It would be desirable

to have a unified representation of this modification, so

that it can be used at design as well as at runtime.

4.1 The Need for Unification
We claim that design and runtime are similar in their

definition and their using process, but not in their

implementation. Hence, in order to define a complete

approach for DSPL, we need a unified representation of

adaptations that combines design and runtime in a coherent

development process. Design adaptations are often

considered to be of completely different nature than

runtime adaptations. Design adaptations are motivated by

design goals whereas runtime adaptations are motivated by

changes of the software environment. Moreover, design

adapftations are considered as permanent adaptations that

cannot be rolled back whereas runtime adaptations are

considered as impermanent. However, whatever the

technology and whatever the phase, a software adaptation

is always initiated by a particular motivation and is always

realized through modifications of some software artifacts.

Therefore, from a specification point of view, design and

runtime adaptations are not that different. We argue that a

single unified language should be provided to specify both

of them. Based on this language, a platform should be

realized to derive the software products at design time and

runtime transparently.

Having only one unified language to specify design and

runtime adaptations offers several advantages. First, it

formalizes similarities and differences that exist between

the two kinds of adaptation. Second, it may serve as a basis

to transform design adaptations into runtime ones and vice

versa. Transforming design adaptations into runtime one

International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 498 | P a g e

allows one to delay the realization of some design

adaptations to the runtime phase. Transforming runtime

adaptation into design one prevents the realization of

adaptation mechanisms that have been defined regarding

specific environment state that may not arise at runtime.

Third, unifying the specification of modifications done by

both aspects is the first step to compute analysis such as

dependency analysis between aspects.

Having a platform that derives the software products at

design time and at runtime transparently offers several

advantages. First, it supports the whole life cycle from the

initial creation of the product (driven by feature selection)

to its dynamic adaptation (driven by changes of its

environment). Second, it establishes the link between the

motivations (feature selection or changes of the product

environment) and the adaptations of the software artifacts.

Third, it can be used as a way to achieve flexibility in the

tradeoff between development cycles that are fully design

oriented (without any runtime adaptation), and

development cycles that are fully runtime oriented

(without any feature selection).

4.2 Challenges for DSPL
Having the unification in mind, we can now precise the

goals of our approach. We investigate on software

engineering techniques for developing and adapting

software. Our main goal is to implement dynamic software

product lines through the unification of software

adaptations that allows developers to define and

implement adaptations both at design time and at runtime.

Let us now refine the goals of our approach and group

them properly according to the classification we have

introduced for the reviewed works, namely: design and

variability, runtime and context awareness, and unification.

Design and Variability

First of all a DSPL needs a design adaptation phase that

allows developers to build products through automated

processes. These processes need to take into account the

variability of the product family as well as further analysis

and management for different product configurations. We

identify the following challenges for a design adaptation

process:

 Automated Development Process An SPL

exploits commonalities among a set of software products

in order to identify and build reusable assets that can be

used to derive new products reducing the effort and time

invested when building several products. A DSPL needs to

automate the development process of adaptable software.

 Variability and Correctness It is important that

products are not only easier to develop, but also that their

correctness remains guaranteed. When composing multiple

parts to form a single software product, it is possible that

two or more of those parts have conflicts regarding the

elements where they are going to be composed and the

requirements for the composition to take place. In other

words, implicit dependencies may exist between different

artifacts which may lead to composition problems. A

design time adaptation has to exploit variability

management in order to define a development process that

analyses such dependencies and prevents incorrect

products from being derived.

 Guarantee Platform Independence It is also

desirable that business concepts about the products to be

derived are separated from the details of the underlying

platform. The derivation process in the DSPL has to

postpone as much as possible the decisions about platform

and implementation. This enables developers to define

multiple targets and offer support for different platforms.

Runtime and Context awareness

Second, the DSPL has to deal with runtime

reconfigurations. For this process, context information has

to be used to decide about the adaptation. At the same

time, the reconfiguration has to respect the constraints

defined during the design with the variability. We identify

the following challenges that have to be faced to realize a

process of adaptation at runtime:

 Define and adaptation cycle with well-assigned

responsibilities An equivalent process of product

derivation as the one defined for the design adaptations has

to be defined. It has to take as input the running product

and its configuration, and has to return a new adapted

version of the product. A complete adaptation loop has to

be established, by differentiating different sub-process in

charge of: monitoring the context information, analyzing

and deciding about possible adaptations, and finally,

executing the adaptation on the software product.

 Use context information for the decision making

A fundamental issue in adaptive software development is

the management of context events, and its manipulation in

order to modify products dynamically. The DSPL has to

take context information into account to decide the

appropriate configuration at the right moment when

adaptations take place in order to offer a better experience

to the final users.

 Extend the concept of feature at runtime Since

products in the SPL are described as a set of selected

features, an important challenge to achieve dynamic

product derivation is to define a way to maintain, and

update, the state of a product in terms of the features it is

supporting at a given moment of its execution.

Furthermore, this information has to be used, in the same

way as in the design time adaptations, to guarantee that the

product will respect the constraints of the product family

after the adaptation has taken place.

A unified representation and management of design

time and runtime adaptations

Finally, to provide the unification of adaptations at

design time and at runtime, the DSPL has to define a

language and use an underlying platform that allows

definition of adaptations independently from the moment

when they take place. This would allow developers to

define only once any adaptation, and use it independently

at design for building a product, or at runtime for adapting

an existing product.

Additional Properties for a DSPL

International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 499 | P a g e

In addition to the challenges for the design phase, the

runtime phase, and the unification of adaptations, we

consider that any framework for developing DSPLs has to

consider the following properties.

 Extensibility Extensibility is a property of highly

importance in any SPL. Since requirements are evolving

constantly, it is desirable that SPLs can be extended or

adapted to support the derivation of new products,

different execution platforms, or new functionalities

required by different stakeholders. This fact is reinforced

by [32] when authors define domain and application

engineering processes. These two processes are usually

implemented in iterative developments cycles. This

practice intends to exploit the complementary nature of

each process. For example, during the application

engineering, it is possible to identify new requirements.

Those requirements can be supported by the existing

DSPL in a new iteration, by creating their corresponding

assets. This allows the SPL to evolve and extend its scope

over time. DSPLs are no different than traditional SPLs

regarding the need for extensibility. It is important to

provide the mechanisms to extend the scope of the product

family and support new functionalities regardless of the

derivation time.

 Scalability In any SPL, one of the biggest

challenges refers to the management of the combinatorial

explosion of product configurations. The size of a product

family can grow exponentially when features are added.

Larger product families represent a challenge in terms of

scalability and performance. In an approach for DSPLs, it

is necessary to consider this issue because part of the

management of the product family is postponed at the

execution of the different products. Calculations over

larger product families performed at runtime may have an

impact on the adaptation and the overall performance of

the products.

 Runtime History When a product is adapted at

runtime, it changes its configuration. If such changes

include the deletion of several parts of the product, then

such modifications have to remain available. Like these,

products can be able to go back to a previous state before

one or several adaptations have taken place. A DSPL has

to take into account this kind of changes.

 Usability Finally, another property for an

approach in DSPLs is usability. By usability, we mean the

difficulty encountered by newcomers when starting to use

a new framework for DSPLs. This can be related with the

changes in the development process, especially when there

are automated parts that are mixed with manual parts; and

also, it can be related with the use of new languages for

modeling the different assets that are combined to produce

the software products. We consider that a framework for

DSPL has to remain usable, for the automation to have a

positive impact on the effort and time invested when

building individual software products, regardless of the

changes on the development process introduced by the

framework.

4 CONCLUSION

In this paper we have surveyed several approaches in

literature that are close related to the main contributions of

our work. We have reviewed an important number of

research works that use a variety of technologies (i.e.

MDE, SPL, AOSD, CBSE) in order to build software

and/or adapt it at runtime. We made a classification of the

approaches surveyed. This classification has been used to

concretize the main objectives of our approach which are

variability management, automated development and

correctness, platform independence, and derivation at

runtime. We conclude then this part dedicated to the study

and analysis of the background and state of the art.

REFERENCES

[1] Sven Apel, Thomas Leich, and Gunter Saake.

Aspectual feature modules. IEEE Transactions on

Software Engineering (TSE), 34(2):162–180,

2008.

[2] Hugo Arboleda, Andrés Romero, Rubby Casallas,

and Jean-Claude Royer. Product derivation in a

model-driven software product line using decision

models. In Antonio Brogi, João Araújo, and

Raquel Anaya, editors, CIbSE, pages 59–72,

2009.

[3] Thais Batista, Ackbar Joolia, and Geoff Coulson.

Managing dynamic reconfiguration in

component-based systems. In ECSA, pages 1–17.

LNCS, 2005.

[4] Leire Bastida, Francisco Javier Nieto, and

Roberto Tola. Context-aware service

composition: a methodology and a case study. In

SDSOA ’08: Proceedings of the 2nd international

workshop on Systems development in SOA

environments, pages 19–24, New York, NY,

USA, 2008. ACM.

[5] Peter J. Brown. The stick-e document: a

framework for creating context-aware

applications. In A. Brown, A. Brüggemenn-Klein,

and A. Feng, editors, Special Issue: Proceedings

of the Sixth International Conference on

Electronic Publishing, Document Manipulation

and Typography, Palo Alto, volume 8, pages

259–272, John Wiley and Sons, June 1996.

[6] Nelly Bencomo, Pete Sawyer, Gordon Blair, and

Paul Grace. Dynamically adaptive systems are

product lines too: Using model-driven techniques

to capture dynamic variability of adaptive

systems. In 2nd International Workshop on

Dynamic Software Product Lines (DSPL 2008),

Limerick, Ireland„ 2008.

[7] Krzysztof Czarnecki and Michal Antkiewicz.

Mapping features to models: A template approach

based on superimposed variants. In Robert Glück

and Michael R. Lowry, editors, GPCE, volume

3676 of Lecture Notes in Computer Science,

pages 422–437. Springer, 2005.

International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 500 | P a g e

[8] Siobhán Clarke. Extending standard uml with

model composition semantics. Sci. Comput.

Program., 44(1):71–100, 2002.

[9] Pierre-Charles David and Thomas Ledoux. An

Aspect-Oriented Approach for Developing Self-

Adaptive Fractal Components. In Welf Löwe and

Mario Südholt, editors, Software Composition,

volume 4089 of Lecture Notes in Computer

Science, pages 82–97. Springer, 2006.

[10] Tom Dinkelaker, Ralf Mitschke, Karin Fetzer,

and Mira Mezini. A Dynamic Software Product-

Line Approach using Aspect Models at Runtime.

In Fifth Domain-Specific Aspect Languages

Workshop, 2010.

[11] Tijs Van der Storm. Generic feature-based

software composition. In Markus Lumpe and

Wim Vanderperren, editors, Proc. of the 6th

International Symposium on Software

Composition (SC’2007) - Revised Selected

Papers, volume 4829 of Lecture Notes in

Computer Science, pages 66–80. Springer, 2007.

[12] Svein Hallsteinsen, Mike Hinchey, Sooyong Park,

and Klaus Schmid. Dynamic Software Product

Lines. Computer, 41(4):93–95, 2008.

[13] IBM. An architectural blueprint for autonomic

computing. white paper, June 2006. White Paper.

[14] Jörg Kienzle,Wisam Al Abed, and Jacques Klein.

Aspect-oriented multi-view modeling. In AOSD

’09: Proceedings of the 8th ACM international

conference on Aspectoriented software

development, pages 87–98, New York, NY, USA,

2009. ACM.

[15] Gregor Kiczales, Erik Hilsdale, Jim Hugunin,

Mik Kersten, Jeffrey Palm, and William G.

Griswold. An overview of AspectJ. In J. L.

Knudsen, editor, Proc. ECOOP 2001, LNCS

2072, pages 327–353, Berlin, June 2001.

Springer-Verlag.

[16] Kwanwoo Lee, Goetz Botterweck, and Steffen

Thiel. Aspectual separation of feature

dependencies for flexible feature composition. In

Proc. of the 33rd Annual IEEE International

Computer Software and Applications Conference,

pages 45–52. IEEE CS, 2009.

[17] Sten A. Lundesgaard, Arnor Solberg, Jon

Oldevik, Robert B. France, Jan Øyvind Aagedal,

and Frank Eliassen. Construction and execution

of adaptable applications using an aspect-oriented

and model driven approach. In Jadwiga Indulska

and Kerry Raymond, editors, DAIS, volume 4531

of Lecture Notes in Computer Science, pages 76–

89. Springer, 2007.

[18] Brice Morin, Olivier Barais, and Jean-Marc

Jezequel. K@rt: An aspect-oriented and model-

oriented framework for dynamic software product

lines. In Proceedings of the 3rd International

Workshop on Models@Runtime, at MoDELS’08,

Toulouse, France, oct 2008.

[19] Brice Morin, Olivier Barais, Gregory Nain, and

Jean-Marc Jezequel. Taming Dynamically

Adaptive Systems with Models and Aspects. In

31st International Conference on Software

Engineering (ICSE’09), Vancouver, Canada, May

2009.

[20] Philip K. McKinley, Seyed M. Sadjadi, Eric P.

Kasten, and Betty H. C. Cheng. A taxonomy of

compositional adaptation. Technical report,

Department of Computer Science and

Engineering, Michigan State University, 2004.

[21] Angel Núñez, Jacques Noyé, and Vaidas Gasi ¯

unas. Declarative definition of contexts with

polymorphic events. In International Workshop

on Context-Oriented Programming, COP ’09,

pages 2:1–2:6, New York, NY, USA, 2009.

ACM.

[22] Peyman Oreizy, Michael M. Gorlick, Richard N.

Taylor, Dennis Heimbigner, Gregory Johnson,

Nenad Medvidovic, Alex Quilici, David S.

Rosenblum, and Alexander L. Wolf. An

architecture-based approach to self-adaptive

software. IEEE Intelligent Systems, 14(3):54–62,

1999.

[23] Peyman Oreizy, Nenad Medvidovic, and Richard

N. Taylor. Runtime software adaptation:

framework, approaches, and styles. In ICSE

Companion, pages 899–910, 2008.

[24] An Phung-Khac. A Model-driven Feature-based

Approach to Runtime Adaptation of Distributed

Software Architectures. PhD thesis, Université

Européenne de Bretagne., November 2010.

[25] Gilles Perrouin, Jacques Klein, Nicolas Guelfi,

and Jean-Marc Jézéquel. Reconciling automation

and flexibility in product derivation. In 12th

International Software Product Line Conference

(SPLC 2008), pages 339–348, Limerick, Ireland,

September 2008. IEEE Computer Society.

[26] Nicolas Pessemier, Lionel Seinturier, Laurence

Duchien, and Thierry Coupaye. A component-

based and aspect-oriented model for software

evolution. IJCAT, 31(1/2):94–105, 2008.

[27] Raghu Y. Reddy, Sudipto Ghosh, Robert B.

France, Greg Straw, James M. Bieman, N.

McEachen, Eunjee Song, and Geri Georg.

Directives for composing aspectoriented design

class models. T. Aspect-Oriented Software

Development I, 3880:75–105, 2006.

[28] Pablo Sánchez, Neil Loughran, Lidia Fuentes, and

Alessandro Garcia. Engineering languages for

specifying product-derivation processes in

software product lines. In Software Language

Engineering: First International Conference, SLE

2008, Toulouse, France, September 29-30, 2008.

Revised Selected Papers, pages 188–207, Berlin,

Heidelberg, 2009. Springer-Verlag.

[29] Pablo Trinidad, Antonio Ruiz Cortés, and

Joaqu´in Pe na. Mapping Feature Models onto

International Journal of Research in Business and Technology

Volume 4 No.2 June 2014

©
TechMind Research, Canada 501 | P a g e

Component Models to Build Dynamic Software

Product Lines. In International Workshop on

Dynamic Software Product Line, 2007.

[30] Markus Voelter and Iris Groher. Product line

implementation using aspect-oriented and model-

driven software development. In SPLC ’07:

Proceedings of the 11th International Software

Product Line Conference, pages 233–242,

Washington, DC, USA, 2007. IEEE Computer

Society

[31] Dennis Wagelaar. Composition techniques for

rule-based model transformation languages. In

ICMT ’08: Proceedings of the 1st international

conference on Theory and Practice of Model

Transformations, pages 152–167, Berlin,

Heidelberg, 2008. Springer- Verlag.

[32] K. Pohl, G. B¨ockle, and F. J. van der Linden,

Software Product Line Engineering: Foundations,

Principles and Techniques, Springer, New York,

NY, USA, 2005.

[33] Ji Zhang and Betty H. C. Cheng. Model-based

Development of Dynamically Adaptive Software.

In ICSE ’06: Proceedings of the 28th

International Conference on Software

Engineering, pages 371–380, New York, NY,

USA, 2006. ACM Press.

[34] Anind K. Dey, Gregory D. Abowd, and Daniel

Salber. A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware

applications. Hum.-Comput. Interact., 16(2):97–

166, 2001.

[35] Pierre-Charles David and Thomas Ledoux.

Wildcat: a generic framework for context-aware

applications. In MPAC ’05: Proceedings of the

3rd international workshop on Middleware for

pervasive and ad-hoc computing, pages 1–7, New

York, NY, USA, 2005. ACM.

[36] Brice Morin, Franck Fleurey, Nelly Bencomo,

Jean-Marc Jézéquel, Arnor Solberg, Vegard

Dehlen, and Gordon S. Blair. An aspect-oriented

and model-driven approach for managing

dynamic variability. In Krzysztof Czarnecki,

Ileana Ober, Jean-Michel Bruel, Axel Uhl, and

Markus Völter, editors, Model Driven

Engineering Languages and Systems, 11th

International Conference, MoDELS 2008,

Toulouse, France, September 28 - October 3,

volume 5301 of Lecture Notes in Computer

Science, pages 782–796. Springer, 2008.

[37] David L. Parnas. On the criteria to be used in

decomposing systems into modules.

Communications of the ACM, 15(12):1053–1058,

December 1972.

[38] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and

Klaus Ostermann. An Overview of CaesarJ.

Lecture Notes in Computer Science :

Transactions on Aspect-Oriented Software

Development I, pages 135–173, 2006.

