]TE-C'“-‘I'\'B

ISSN No. 2291-2118

International Journal of Research in Business and Technology

Volume 3 No. 2 October 2013

Prakash Kuppuswamy®, Dr. Saeed Q Y Al-Khalidi®
'Department of Computer Engineering & Networks, JAZAN University, KSA.
varshiniprakash@rediffmail.com.
2Deanship of Libraries Affairs,King Khalid University, KSA.
salkhalidi@yahoo.com.

Abstract: Data compression is a common requirement for most of the computerized applications. There are many number
of unsecured data compression algorithms, which are dedicated to compress different unsecured data formats. Even for a
single data type there are number of different compression algorithms, which use different approaches. In this research, we
propose a simple and efficient data compression algorithm particularly suited to be used on available commercial basis using
secured manner. Our intention is transmitting text data in secured as well as compressed in the open environment. It is using
double compression technique based on Huffman coding algorithm and simple symmetric key algorithm. Experiment itself
evaluates the performance of new secured data compression algorithm with other data compression algorithm.

Keywords: - Data compression; Encryption; Decryption; Symmetric; Modulation.

1. INTRODUCTION

Compression technique used for the purpose of utilization
of storage space is important even with today's huge
storage volumes [6]. Data compression has been adopted
in hardware designs to improve performance and power.
Cache compression increases the cache capacity by
compressing block data and accommodating more blocks
in a fixed space [9], [10]. It is the art of representing the
information in a compact form rather than its original or
uncompressed form [7]. In other words, using the data
compression, the size of a particular file can be reduced.
This is very useful when processing, storing or transferring
a huge file, which needs lots of resources. If the algorithms
used to encrypt works properly, there should be a
significant difference between the original file and the
compressed file. When data compression is used in a data
transmission application, speed is the primary goal. Speed
of transmission depends upon the number of bits sent, the
time required for the encoder to generate the coded
message and the time required for the decoder to recover
the original collection. In a data storage application, the
degree of compression is the primary concern [1]. Various
lossless data compression algorithms have been proposed
and used. Some of the main techniques in use are the
Huffman Coding, Run Length Encoding, Arithmetic
Encoding and Dictionary Based Encoding [3].

Symmetric or secret key cryptography, a single key is used
for both encryption and decryption. Sender uses the key
using some set of rules to encrypt the plaintext and sends

the ciphertext to the receiver. The receiver applies the
same key or rule set to decrypt the message and recover
the plaintext. Because a single key is used for both
functions, secret key cryptography is also called symmetric
key algorithm. The biggest difficulty with this approach, of
course, is the distribution of the key [2].

This algorithm is shown to be the best solution currently
available in all situations, including archivers, distribution,
and on-line compression such as disk compression or
network datagram compression [11].

2. RELATED WORKS

David A. Huffman in the year 1952 proposed an
Encoding Algorithms use the probability distribution of the
alphabet of the source to develop the code words for
symbols. The frequency distribution of all the characters of
the source is calculated in order to calculate the probability
distribution. According to the probabilities, the code words
are assigned. Shorter code words for higher probabilities
and longer code words for smaller probabilities are
assigned. For this task a binary tree is created using the
symbols as leaves according to their probabilities and
paths of those are taken as the code words. Two families of
Huffman Encoding have been proposed: Static Huffman
Algorithms and Adaptive Huffman Algorithms. Static
Huffman Algorithms calculate the frequencies first and
then generate a common tree for both the compression and
decompression processes [2]. Details of this tree should be
saved or transferred with the compressed file. The

©
TechMind Research, Canada

163 |Page

]TE-C'“-‘I'\'B

ISSN No. 2291-2118

International Journal of Research in Business and Technology

Volume 3 No. 2 October 2013

Adaptive Huffman algorithms develop the tree while
calculating the frequencies and there will be two trees in
both the processes. In this approach, a tree is generated
with the flag symbol in the beginning and is updated as the
next symbol is read.

Glen G. Langdon, Jr. in 1984 discussed about An
Introduction to Arithmetic Coding. In this paper presents
the key notions of arithmetic compression coding by
means of simple examples Arithmetic coding is a data
compression technique that encodes data (the data string)
by creating a code string which represents a fractional
value on the number line between 0 and 1. The coding
algorithm is symbol wise recursive; i.e., it operates upon
and encodes (decodes) one data symbol per iteration or
recursion. On each recursion, the algorithm successively
partitions an interval of the number line between 0 and I ,
and retains one of the partitions as the new interval. Thus,
the algorithm successively deals with smaller intervals,
and the code string, viewed as a magnitude, lies in each of
the nested intervals. The data string is recovered by using
magnitude comparisons on the code string to recreate how
the encoder must have successively partitioned and
retained each nested subinterval. Arithmetic coding differs
considerably from the more familiar compression coding
techniques, such as prefix (Huffman) codes. Also, it should
not be confused with error control coding, whose object is
to detect and correct errors in computer operations. [2]
S.R. Kodituwakku, U. S.Amarasinghe, An experimental
comparison of a number of different lossless compression
algorithms for text data is carried out. Several existing
lossless compression methods are compared for their
effectiveness. Although they are tested on different type of
files, the main interest is on different test patterns. By
considering the compression times, decompression times
and saving percentages of all the algorithms, the Shannon
Fano algorithm can be considered as the most efficient
algorithm among the selected ones. Those values of this
algorithm are in an acceptable range and it shows better
results for the large files [1].

Prakash Kuppuswamy, Dr. Saeed Q Y Al-Khalidi
proposed Implementation of security through simple
symmetric key algorithm based on modulo 37 in October
2012 proposed new symmetric key algorithm. Encryption
and key generation became a vital tool for preventing the
threats to data sharing and tool to preserve the data
integrity so we are focusing on security enhancing by
enhancing the level of encryption in network. This study’s
main goal is to reflect the importance of security in
network and provide the better encryption technique for
currently implemented encryption techniques in simple
and powerful method. In our research we have proposed a
modular 37 and select any number and calculate inverse of
the selected integer using modular 37. The symmetric key
distribution should be done in the secured manner. Also,

we examine the performance of our new SSK algorithm
with other existing symmetric key algorithm.[4]

3. PROPOSED TECHNIQUE

One of the effective tools for ensuring the safety of
compressed data transactions is the secured encryption
techniques. It combines the Huffman encoding technique
and simple symmetric algorithm. The proposed method of
data compression technique focuses on the data
confidentiality issue. Although security mechanisms, this
method is very easy to adopt the coding of bulk and more
compressed secured data. Also it is very safe enough on
the other side. The tools for designing methods were as
follows

3.1 Huffman Code

Huffman Code assigns shorter encodings to elements with
a high frequency, F:e. It differs from block encoding in
that it is able to assign codes of different bit lengths to
different elements. Elements with the highest frequency,
F:e, get assigned the shortest bit length code. The key to
decompressing huffman code is a huffman tree.

3.2 Huffman tree

A huffman tree is a special binary tree called a trie. A
binary trie is a binary tree in which a O represents a left
branch and a 1 represents a right branch. The numbers on
the nodes of the binary trie represent the total frequency, F,
of the tree below. The leaves of the trie represent the
elements, e, to be encoded. The elements are assigned the
encoding which corresponds to their place in the binary
trie.

3.3 Inverse function

An inverse of a matrix, usually written as f*(x), is a
reflection of the original function, f(x), around the
line y = x. Basically, every x value is changed to a y
value and every y value is change to an x value.

3.4 Modular Arithmetic

Modular arithmetic over a number ‘n’ involves arithmetic
operations on integers between 0 and n — 1, where n is
called the modulus. If the number happens to be out
of this range in any of the operation the result, r, is
wrapped around in to the range 0 and n — 1 by repeated
subtraction of the modulus n from the result r. This is
equivalent in taking the remainder of division operation
r/n.

3.5. Selecting random positive and negative
integer

The reason for selecting the random positive and negative
integer to send the data compressed and secured. The

©
TechMind Research, Canada

164 |Page

iTE-C"l‘-‘I'\'D

ISSN No. 2291-2118

International Journal of Research in Business and Technology

Volume 3 No. 2 October 2013

random integer should satisfy (1< x < 37) because we need
inverse of the selected random integer for the purpose of
decryption technique.

3.6 Encoding sequence

Step 1: Find out the element frequency from the given
message

Step 2: Assign Huffman code

Step 3: Assign decimal value for the Huffman code

Step 4: Assign n=37 (prime number)

Step 5: Take random positive integer which satisfy mod
37;(x*xh)=1

Step 6: Again take random negative integer for more
securing

Step 7: multiply with the decimal value and selected
positive, negative numbers

Step 8: Use mod 37
Step 9: Use again Huffman frequency code
Step 10: Now derived code is secured encoded message

4. IMPLEMENTATION

In order to provide quick and simple data
compression/decompression, the bits size of the secret key
has to be chosen effectively. For compression small
amount of data, there should not be any overhead to the
encrypting system as well as there should not be any
compromise on the security level. Thus an optimized size
of data “DAD BAD CAB CAFE” is chosen for
experiment.

Table 1. Uncompressed data

Data Integer value Binary Value
D 4 100
A 1 001
D 4 100
B 2 010
A 1 001
D 4 100
C 3 011
A 1 001
B 2 010
C 3 011
A 1 001
F 6 110
E 5 101

It is observed from the above table binary equivalent value
is 39 bits. Now we are applying Huffman compression
technic.

Table 2. Huffman compressed data

Text | No. of frequency | Huffman | Total bits
code

A 4 10 8 Bits
B 2 000 6 Bits
C 2 001 6 Bits
D 3 01 6 Bits
E 1 111 3 Bits
F 1 110 3 Bits

32 Bits

Table 3. Secured compressed data technique

Text | Huffman | Equivalent | Multiplying Again
che Integer with _ Rgndom using
Binary value positive Integer |y ffman

Assume ‘3’and code
negative integer
-8 using mod 37

D 01 1 13 10

A 10 2 26 01

D 01 1 13 10

B 010 0 0 111

A 10 2 26 01

D 01 1 13 10

C 011 1 13 10

A 10 2 26 01

B 010 0 0 111

C 011 1 13 10

A 10 1 26 01

F 110 6 13 10

E 101 7 26 01

Total secured | 30 Bits
data bits

©
TechMind Research, Canada

165 |Page

=) TECHNANG International Journal of Research in Business and Technology
ISSN No. 2291-2118 Volume 3 No. 2 October 2013

Table 4. Comparison of uncompressed, Huffman code, Secured compressing technique

Data | Equivalent | Binary No of | Total Decimal Multiply with | Use Huff
Integer digit Frequency Huffman | Value decimal value
value Occurs (3*-8)%37
D 4 100 3 Times-01 6bits 1 13 10
A 1 001 4 Times-10 8bits 2 26 01
D 4 100 1 13 10
B 2 010 2Times-000 6bits 0 0 111
A 1 001 2 26 01
D 4 100 1 13 10
C 3 011 2Times-001 6bits 1 13 10
A 1 001 2 26 01
B 2 010 0 0 111
C 3 011 1 13 10
A 1 001 1 26 01
F 6 110 1Time-110 3bits 6 4 001
E 5 101 1Time-111 3bits 7 17 110
39 Bits 32 Bits 30 Bits

5. RESULT ANALYSIS

The proposed method of Data compression technique is
the combination of the Huffman coding and symmetric key
algorithm. More number of data transferring daily across
the world. All the data transaction is not secured. Some of
the data transferring method searching for secured
transaction using various cryptography and data security
algorithm. The other methods, looking for the new
compression technique for bulk data transaction. This
proposed new method of secured data compression
technique, which will satisfy both the type of user.

. Uncompressed Huffman Secured
The algorithm executes on PC computer of CPU Intel data coding

Pentium 4, 2.2 MHz Dual Core. The programs
implemented using Microsoft Visual Studio 2008 (C#). It
is tested with three messages and with different in length
(1000, 2000, 3000 characters).

Fig 1. Comparison chart

©
TechMind Research, Canada 166 |Page

= TECHMIND International Journal of Research in Business and Technology

ISSN No. 2291-2118

Volume 3 No. 2 October 2013

4 N\

- J

Fig 2. Average performance of data
compression

Table 5. Comparison of execution timing

No. Uncompressed | Huffman Secured data
of Data Coding compressing
BIS (Un secured) (Un secured)

Total execution timings

1000 | Imts 11 Sec 1 mts 0 Sec 1mts 20 Sec
2000 | 2mts 20 Sec 2 mts 0 Sec 2 mts 30Sec
3000 | 3mts 30 Sec 3 mts 0 Sec 3 mts 50 Sec

6. CONCLUSION

It has been clear that the result of our “new proposed
technique” is better result producing as compared
normal and Huffman coding. It is new technic of
compressing data with secured manner. It is essential to
achieve few goals like confidentiality and integration
across the data transaction between the medium. The
proposed compression technique is very simple in nature
and there are two compressing methods present in this
compression algorithm. So, It would make it more
secured. For large amount of data transaction and
commercial communication purpose this algorithm will
work very smoothly. The proposed compression
technique wouldn’t be cost effective since those are not
designed for large amount of data in minimal cost.

REFERENCES

[11 S.R. Kodituwakku, U. S.Amarasinghe, “Indian
Journal of Computer Science and Engineering”,
Vol.1No 4 416-425, ISSN : 0976-5166.

(2]

(3]

(4]

[5]

(6]

[7]
(8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

Glen G. Langdon, Jr. “An Introduction to
Arithmetic Coding”, Ibm Res. Develop. Vol. 28,
No. 2 MARCH 1984,

Kesheng, W.J. Otoo and S. Arie, “Optimizing
bitmap indices with efficient compression”, ACM
Trans. Database Systems, 31: 1-38.2006.

Prakash Kuppuswamy, Dr. Saeed Q Y Al-
Khalidi, “Implementation of security through
simple symmetric key algorithm based on modulo
37”7, DOCT, ISSN: 2277-3061, Volume 3 No. 2,
OCT, 2012.

Blelloch, E., Introduction to Data Compression,
Computer Science Department, Carnegie Mellon
University. 2002.

Peter A. James, “Data Compression for process
historians”, Chevron Research and Technology
Company, Richmond, CA 94802-0627, 1995.

Paul, LM, “Fundamental Data Compression”,
2006 Elsevier, Britain.

Kumar B., Point4: Working with data and
Graphical Algorithms in C, ¢ Reference Point
Suite, skillsoft 2002.

R. Alameldeen and D. A. Wood, “Adaptive
Cache Compression for High- Performance
Processors” in Proceedings of ISCA, pp. 212-
223, 2004.

E. G. Hallnor and S. K. Reinhardt, “A Unified
Compressed Memory Hierarchy”, in Proceedings
of HPCA, pp. 201-212, 2005.

Charles Bloom, “a new data compression
algorithm”, chloom@mail.utexas.edu.

Herbert Edelsbrunner, LZW Data Compression,
last modified: Feb 2004 http://www.cs.duke.edu

Huffman, D.A., A method for the construction of
minimumredundancy codes. Proc. IRE, Vol. 40,
pp. 1098-1101, Sept. 1952.

Lenat, Doug, Lempel-Ziv compression, 1999
http://foldoc.doc.ic.ac.uk

Jaradat, A. R. and Irshid, M. I., A Simple Binary
Run - Length Compression Technique For Non-
Binary Source Based on Source Mapping. Active
and Passive Elec. Comp., 2001, Vol. 24, pp. 211
—-221.

Mark Nelson, LZW Data Compression, Dr.
Dobb's Journal, October 1989 www.dogma.net

Matt Powell, University of Canterbury, last
updated November 20, 2001
http://corpus.canterbury.ac.nz

©
TechMind Research, Canada

167 |Page

mailto:cbloom@mail.utexas.edu
http://foldoc.doc.ic.ac.uk/
http://www.dogma.net/
http://corpus.canterbury.ac.nz/

o S International Journal of Research in Business and Technology

I1SSN No_ 2291-2118 Volume 3 No. 2 October 2013

Authors’ Biography

Prakash Kuppuswamy Lecturer, Computer Engineering & Networks Department in
Jazan University, KSA He is research Scholar-Doctorate Degree yet to be awarded by
‘Dravidian University’. He has published 12 International Research journals/Technical
papers and participated in many international conferences in Rep. of Maldives, Libya
and Ethiopia. His research area includes Cryptography, Bio-informatics and Network
algorithms.

Prakash Kuppuswamy

Dr. Saeed Q. Y. Al-Khalidi, Dean, Dean of Libraries Affairs at King Khalid
University, Abha. KSA. He published many National & International papers, Journals.
Also, he participated as a Reviewer in many international conferences worldwide. He
completed Master Degree and Doctor of Philosophy in University of East Anglia. His
research interests include: Information System development, approaches to systems
analysis and the early stages of systems development process, IT/IS evaluation
practices, E-readiness assessment.

Dr. Saeed Q. Y. Al-
Khalidi

©
TechMind Research, Canada 168 | Page

