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Abstract- In this research, a taxonomy of known electricity demand forecasting techniques is presented based on extensive 

empirical studies. In addition, a decision strategy for selecting an electricity demand forecasting method has been presented. 

The strategy has been formulated based on an eight-factor model created by World Bank and inputs gathered from electricity 

demand forecasting experts (through a questionnaire). The techniques have been assessed based on time horizon, accuracy, 

complexity, skill level, data volumes, geographical coverage, adaptability, and cost. The experts rated ARIMA 

(Autoregressive integrated moving average) with exponential smoothing and Kalman filtering as the most adopted method. 

The next most adopted method is Artificial Neural Networks with preprocessed Linear and Fuzzy inputs. However, now 

Support Vector Regression may replace this method, which is currently tested by many electrical engineers engaged in 

electricity demand forecasting. In addition to these highlighted methods, this research also presents the ratings of other 

techniques based on the eight-factor model of World Bank. 

Managerial relevance statement- This research presents a taxonomy of key electricity demand forecasting techniques that will 

serve as a useful reference for students, researchers, and practitioners. In addition, the research presents inputs from experts 

on the ratings of eight selection criteria based on World Bank policy paper for choosing a technique. Although the criteria 

are not adequately supported by literatures (except a few), the experts’ inputs can be useful in decision-making and future 

research directions. 
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1. INTRODUCTION 

In this research, a decision support model for selecting a 

demand forecasting method for electrical distribution 

industry is presented. The model is proposed based on a 

number of selection criteria applicable to specific demand 

scenarios and the objectives of forecasting. The 

forecasting methods are chosen from supply chain 

literature and applied to the electrical distribution industry 

with the help of a review of research studies focused on 

forecasting electricity demand based on consumption data 

and patterns. The proposed model shall be helpful to 

electrical engineering professionals engaged in demand 

planning, capacity planning, economic planning, and 

revenues planning in the electricity distribution industry. 

The Section 2 of this research presents a review of 

literatures on demand forecasting and the research studies 

its application in electricity distribution. The Section 3 

presents the decision support strategy for choosing an 

appropriate demand forecasting method based on criteria 

chosen from the forecasting scenario and objectives. The 

strategy is presented in the form of a decision table based 

on inputs from 54 electrical engineers in five countries. 

The final section (Section 4) presents conclusions with 

recommendations on using the decision support model in 

solving practical demand and capacity planning problems. 

2. REVIEW OF LITERATURES 

2.1 The concept and techniques of demand 

forecasting 
Demand is a relative term to supply given that it is 

measured relative to supply of a product or service, from 

suppliers, production or from the inventory [1]. It is the 

key measure in determining the product/service life cycle, 

as presented in Figure 1 [1].  

Demand forecasting is an approach to get early warning 

signals of customers’ requirements such that an 

organization can plan for adequate supplies, production, 

and inventory [2]. This method helps in reducing 

uncertainty in future by building adequate capacity to 

meet the projected customers’ requirements [1]. The 

challenge is to meet the demands without accumulating 

surplus capacity that may increase the overall cost of 

operations [2].  

Demand forecasting is required for master planning in 

supply chains, which in turn expands into a number of 

intermediate plans [3]. The constraints considered are 

related to uncertainties in the forecasting domain (like 
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seasonal fluctuations) [4][5][6]. Demand forecasting helps 

in deciding quantitative values of the constraints such that 

appropriate decisions could be taken [5]. The values help 

in deciding a quantitative value of demands that could be 

met given the current constraints and the enhancement 

plans for expanding the boundaries such that the 

organization could be prepared to handle additional 

demands in future [5]. Demand forecasting also considers 

the uncertainties affecting the planning process pertaining 

to the constraints such that the organization can be 

prepared for meeting the seasonal fluctuations of demand 

[4][7].  

 

Figure 1: Demand is the determiner of stages of the 

product/service life cycle [1] 

Demand forecasting can be done using qualitative 

methods and quantitative techniques [8]. In this research, 

the focus is on quantitative techniques given that demand 

forecasting in electricity distribution is carried out using 

quantitative analysis of consumption databases (electricity 

load consumption in Mega Watts Hour – MWH), 

temperature databases, humidity databases, demographic 

databases, load distribution databases, and similar 

supporting databases  [9]. The quantitative demand 

forecasting methods include univariate and multivariate 

methods [10]. Univariate methods include rule-based 

methods (like applying domain knowledge, different 

forecast horizons, bounded variables, and mapping 

extrapolation with trends), neural networks, and 

quantitative analogies (includes time series forecasting 

with moving averages, autoregressive progressions, Box-

Jenkins method, exponential smoothing, and state-space 

models) [10]. Multivariate methods include causal 

modeling, expert systems modeling, regression analysis, 

segmentation (breaking the problem into independent 

parts), and index-based analysis (where prior knowledge 

of influence of variables is available) [10].  

Rule-based systems help in making judgmental 

adjustments for improving forecasting accuracy (that is, 

reducing forecasting error) [11]. Judgmental adjustments 

help in improving system forecasting accuracy, improving 

planning efficiency, reducing optimism bias, and reducing 

the chances of misinterpretations [11]. Using forecasting 

support systems and marketing intelligence data helps in 

extrapolation of trends, choice of right variables, and 

choice of upper and lower bounds [11]. Another 

univariate method for forecasting is the application of 

artificial neural networks [12]. In a feed-forward artificial 

neural network, the past data is divided into two sets – 

one for learning and another for testing [12]. The artificial 

neural network comprises of input nodes, hidden nodes 

(in hidden layers), and output nodes [12]. The output 

comprises the projected data series and the forecasting 

error in the form of mean absolute deviation, mean square 

error, root mean squared error, mean absolute percentage 

error, and sum of squared error [12]. The accuracy of the 

model improves with sample size [12]. 

Time series analysis is the most popular method for 

forecasting demands [13]. The most fundamental method 

of time series forecasting is the autoregressive integrated 

moving average (ARIMA; also called Box-Jenkins 

method) method [13]. In autoregressive modeling, a linear 

regression of the current value of the time series with 

previous values of the same series is formulated using 

slopes (coefficients) determined by the model parameters 

[13]. If M1, M2, M3, ---, Mp are the parameters of the 

model, the autoregressive method can be represented by 

the Equation (1) [14]: 

Equation (1): Xt = Xmean + M1Xt-1 + M2Xt-2 + M3Xt-3 + --- 

+ MpXt-p + At 

In Equation (1), Xmean is the mean value of the series and 

At represents the normal distribution of random errors 

[14]. The moving average part of the model is based on 

the assumption that random shocks detected in the past 

are propagated in future series values [14].  

Exponential smoothing is the way to assign weights to 

demand data before incorporating them in the moving 

average method [14]. Exponential smoothing induces 

seasonality in the demand forecasting process [15][16]. 

Seasonality may be additive or multiplicative depending 

upon how the seasonal influence appends the time series 

[14][16]. The additive seasonal influence is represented 

by Equation (2) and the multiplicative seasonal influence 

is represented by Equation (3) [14][15][16]. 

Equation (2): Xt = (A + B*t) + Ct + Ut 

Equation (3): Xt = (A + B*t)*Ct + Ut 

Here, A is the level function, B is the linear trend 

function, Ct represents seasonal indices, and Ut represents 

a random noise function [14][15][16]. The equations (2) 

and (3) are point forecast models, which can be changed 

to state-space models by replacing “t” by “t-1” on the 

right hand side such that the present state of the time 

series is viewed as a function of the state of the time 

series at time “t-1” [17].  

In multivariate demand forecasting models, multiple time 

series are analyzed using multivariate versions of ARIMA 

and state space models, and vector autoregressive models 

[18]. Multivariate forecasts are more complex because 

there can be higher sampling variations, more chances of 



International Journal of Management Excellence 

Volume 8 No.2 February 2017 
 

©
TechMind Research Society           883 | P a g e  

errors, model fitment issues, poor visibility into hidden 

relationships, and higher dependence upon background 

information and domain knowledge [18]. All the input 

variables (factors) cannot be mapped with every output 

variable (effect) studied [19]. Some of the relationships 

will be significant worth considering in the forecasting 

model whereas the rest will be worth discarding [19]. The 

significant relationships could be determined by factor-

based analysis applying domain knowledge, estimating 

covariances, or estimating principal loading factors on the 

output variables [19]. The forecasting model: 

M  

Can be represented by Equations (4), (5), and (6) [20]. 

Equation (4): Y1 = L11X1 + L12X2 + L13X3 + - - - - + L1NXN 

+ E1 

Equation (5): Y2 = L21X1 + L22X2 + L23X3 + - - - - + L2NXN 

+ E2 

- - - - - - - - - -  

Equation (6): YM = LM1X1 + LM2X2 + LM3X3 + - - - - - + 

LMNXN + EN 

In the Equations (4), (5), and (6), LMN = factor loading, 

YM = variable included in the forecasting model, and XN 

= factors influencing the variables included in the 

forecasting model [20]. The factor loading significance is 

derived from Principal Component Analysis that helps in 

finding out the highest loading factors on the observed 

variables [20]. It can also be derived from expert systems 

applying past trend data and domain-level inputs [20]. 

The choice of which LMN variables should be included in 

the model depends upon their loading levels and 

determination of model validity [20]. In matrix notation, 

Equations (4), (5), and (6) can be summarized in matrix 

notation as shown in Equation (7). 

Equation (7): Y = LX + E 

L may be referred to as the structure matrix [21]. In state 

space notation, Equation (7) can be modified as shown in 

Equation (8). 

Equation (8): Y = Lt-1Xt-1 + E 

The term Lt-1Xt-1 may be viewed as the effect of history on 

the model [21]. It may be viewed as a support vector 

linking the observed variables in the current state with the 

previous state of the factors [21].   

The review of demand forecasting techniques indicates 

that they need to be applied to appropriate scenarios 

depending upon the objectives of the forecasting. The 

criteria for selection are important for choosing the 

appropriate forecasting method in a forecasting project. 

The next section presents a review of criteria for selecting 

demand-forecasting techniques. 

2.2 Criteria for selecting an appropriate 

forecasting model for predicting demand 
A demand forecasting model needs to fulfill a number of 

conflicting business requirements. The forecasting model 

capabilities need to be chosen as per the business 

requirements and the  preferred factors while resolving 

conflicting factors [22]. The key criteria for selecting an 

appropriate demand forecasting model are accuracy, 

timeliness, cost savings, interpretation ease, flexibility, 

data availability, user friendliness, implementation ease, 

judgmental inputs, reliability, developmental ease, data 

storage and modifications ease, theoretical reflections, 

and ability to compare alternative policies & 

environments [22][23]. The forecasting model should be 

based on economic fundamentals and established methods 

and techniques [24]. Other criteria for selecting a demand 

forecasting method are type of information (qualitative or 

quantitative), forecasting time-span (short-term, medium-

term, & long-term), forecasting objectives, and goals [25]. 

Qualitative information causes complex decision-making 

challenges and diversity of opinions [25]. Hence, experts’ 

opinions are required to improve forecast reliability [25].  

In many applications, there may be multiple predictors to 

be included in the forecasting model [26]. These 

predictors may be viewed as the factors influencing the 

forecasted variables with varying significances [26]. In 

such applications, multivariate forecasting models are 

created employing the techniques used for dynamic factor 

modeling [26]. The techniques used for dynamic factor 

modeling are maximum likelihood, principal component 

analysis, structural equation modeling, and Bayes 

methods [26]. In such cases, the root mean square error, 

the mean squared error, the mean absolute percentage 

error, the mean squared adjusted percentage error, mean 

absolute trend scaled error, mean absolute adjusted 

percentage error, root mean squared residual, and 

standardized root mean squared residual measures are 

helpful in choosing the most valid model comprising the 

factors and the forecasted variables [26][27][28][29]. 

Other criteria for selecting forecasting models are choice 

of variables, special purposes of modeling (examples are, 

local level modeling, local trend modeling, and seasonal 

modeling), and individual versus combined forecasting 

models [30][31][32]. The variables are chosen from a list 

of potential regresses applicable in the model scenario 

[31]. If the number of potential regressing variables is N, 

the number of linear models possible is 2
N
. In very high 

dimensional variables selection scenarios (where, N can 

be very high), the number of factors need to be reduced 

through factor augmentation using information selection 

criteria [31]. Another approach is to estimate factor 

loading through covariances matrix such that the factors 

having loading coefficients below a pre-determined level 

(varying from 0 to 1) can be rejected [31].  

Special purposes of modeling may be needed to determine 

statistical underpinning for certain parameters [30]. For 

example, the forecaster may target estimating the 

weighted values of common forms of exponential 

smoothing [30]. Three scenarios may be considered 

involving the exponential smoothing parameters [30]: 

Equation (9): Yt = Lt-1 + αℰt (Local level modeling) 
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Equation (10): Yt = Lt-1 + αℰt + Bt-1 + βℰt (Local trend 

modeling) 

Equation (11): Yt = Lt-1 + αℰt + Bt-1 + βℰt + St-m + γℰt 

(Seasonal modeling) 

Local level modeling is a simple state space model of 

observations made in the sample [30]. The local trend 

model is a state space model of observations plus the 

growth/decline of observations made in the sample [30]. 

Seasonal level modeling is a state space model of 

observations plus growth/decline of observations plus 

seasonal components in the model [30]. The symbols α, β, 

and γ are smoothing parameters with the constraints 0 ≤ α 

≤ 1, 0 ≤ β ≤ α, and 0 ≤ γ ≤ 1 – α [30]. 

2.3 Demand forecasting in power distribution 

industry 
As per World Bank report on energy demand models, 

following are the key needs of a demand forecasting 

model of consumer electricity [33][34]: 

(a) Time horizon – short-term, medium-term, long-term 

(b) Accuracy level – low, medium, high 

(c) Complexity – low, medium, high 

(d) Skills needed – low, medium, high 

(e) Data needed – low, medium, high 

(f) Geographical coverage – low, medium, high 

(g) Technological coverage – low, medium, high  

(h) Adaptability – low, medium, high 

(i) Portability – low, medium, high (from one nation to 

another) 

(j) Cost – low, medium, high  

Reference [34] added that the demand forecasting model 

should include impacts of system losses, load rationing, 

cost of energy, GDP of electricity production and 

population growth on electricity demand forecasting. 

Reference [35] added that the model should incorporate 

the effects of weather and temperatures on electricity load 

forecasting, and should have adequate explanation power 

such that the engineers can plan for generation and 

distribution lead-times. Reference [36] added a few 

unpredictable factors like purchase power parity, 

regulatory impacts, and growth of home automation 

appliances that are very difficult to be included in the load 

forecasting models. 

Modeling is the aid to clear thinking and good judgment 

[36]. It helps in formulizing the decision problems, 

prepare a scope of analysis, and guide the process of 

decision-making [36]. In electricity demand forecasting, 

there are a number of factors causing uncertainties in 

consumption patterns [36]. On the supply side, as well, 

there are a number of factors affecting lead times and 

costs [36]. Hence, electricity demand forecasting is more 

complex than forecasting other forms of products and 

services [36].  

Electricity load forecasting is primarily based on time 

horizon (short-term, medium-term, and long-term) 

[37][38][39][40]. Other needs are considered while 

choosing models for forecasting over a chosen time 

horizon [37][38][39]. The key forecasting methods used 

in electricity load forecasting are the following 

[37][38][39][40][41][42]: 

(a) Similar day approach 

(b) End user models 

(c) State space framework with Kalman Filter 

(d) Multiple regression method 

(e) Exponential smoothing method 

(f) Multiple Regression method with Principal 

Component Analysis 

(g) Stochastic time series 

(h) Autoregressive integrated moving average model 

(ARIMA) 

(i) Neural networks 

(j) Support vector-based machine learning 

(k) Genetic algorithms 

(l) Knowledge-based expert systems 

(m) Econometric models 

A review of these methods is presented in the subsequent 

sub-sections. 

2.3.1 Similar day approach 

Similar day approach is a method of searching historical 

data over a period of one to five years for identifying days 

with similar load characteristics [39][44]. This exercise 

helps in forecasting the load of a particular day based on 

the load characteristics of similar days in the past 

[39][40][44]. The forecast data may be a linear 

combination or regression of load characteristics of 

multiple similar days in the past [39][44]. This technique 

can also be combined with artificial neural networks for 

reducing forecasting errors. This method may be rated as 

of low cost and moderately complex suitable for short-

term load forecasts with medium accuracy level and high 

skills using knowledge discovery in databases, and high 

accuracy level and medium skills using artificial neural 

networks [40][43][44]. The method requires large data 

sets [40][44]. 

2.3.2 End user model 

The end user model of load forecasting is based on 

categorization of end user consumption patterns based on 

a number of classifiers, like size of house, KW load 

allocation, electrical appliances used (lighting, cooling, 

heating, refrigeration, entertainment, special household 

machines, etc.), demographics, and such other parameters 

[39][44]. This method is suitable for medium and long-

term electrical load forecasting [39][44]. It is highly 

accurate but is highly complex and expensive as it 

requires high levels of skills and loads of user databases 

[39]. This method can also be mixed with artificial neural 

networks and support vector machines [44]. 

2.3.3 State space framework with Kalman filter 

The state space framework of forecasting is introduced in 

Section 2.1. Kalman filter is a two dimensional space of 

the form (24 days X 52 weeks) in which, historical 

demand data of a certain period is loaded  [34]. This space 

is used to form 24 X 52 linear time-varying regression 

equations of the following forms [34]: 

Equation (12): L (I, K) = a(K) L(I, K – 1) + b(K), K = 1, 

2, 3, 4, - - - -, 24  
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Equation (13): L (I, K) = c(I) L(I – 1, K) + d(I), I = 1, 2, 

3, 4, - - - - -, 52 

The variables a(K) and b(K) are regression parameters 

calculated at the Kth hour. 

The variable L(I, K – 1) is the weekly average load at (K 

– 1) hours. 

The variables c(I) and d(I) are regression parameters 

calculated at Ith week. 

The variable L(I – 1, K) is the weekly average load at (I – 

1)th week. 

At any discrete time instant, the load may be estimated 

from the Equation (14) [34]: 

Equation (14): L(I, K) = α0K + α1K  L(I, K – 1) + α2K  

L(I – 1, K) + α3K  L(I – 1, K – 1) 

L(I, K) = average weekly load at Ith week and Kth hour 

α0K = base load at Kth hour 

αjK = load coefficients at Kth hour; j = 1, 2, 3 

The state space model applying Kalman filter is 

represented by the following equations: 

Equation (15): X(K + 1) = A(K)X(K) + W(K) 

Equation (16): Z(K) = C(K)X(K) + V(K) 

X(K) and X(K + 1) denotes present and next system 

states, A(K) is the state transition matrix, C(K) is the 

output matrix, Z(K) is the measurement vector, V(K) is 

the measurement error, and W(K) is the system error [34]. 

State space modeling with Kalman’s filter is suitable for 

long-term forecasting with a reasonable accuracy [34]. 

This method is of low cost and moderate complexity 

requiring high skills, but requires less data (only previous 

year load data is sufficient). It can project hourly loads for 

next one year based on the hourly load data of the 

previous year [34]. 

2.3.4 Multiple regression method 

The load forecast model of multiple regression method is 

represented by the following equation [37][38]: 

Equation (17): Yt = VtAt + ℰt 

Yt = Total load forecasted at the sampling time “t” 

Vt = a vector comprising the variables included in the 

forecasting model. Examples are: day (working day or a 

weekend), humidity, wind speed, intensity of light, and 

temperature. 

At = a transposed vector of regression coefficients 

ℰt = total error in the model 

This model is based on the assumption that the 

influencing variables chosen affect the load variation 

linearly and there is an internal correlation among the 

variables plotted on multiple time series [38][39]. This is 

a low cost method with moderate data requirements and 

moderate accuracy for short-term forecasting [37][45]. It 

does not require high skills because any statistical 

software capable of running regression reports on time 

series can be used [37][45]. It can help in projecting the 

effects of weather and temperature changes on electricity 

consumption patterns [37][41]. However, if high errors 

crop up, it is difficult to interpret their reasons [45]. The 

multiple regression model can be split into weather-

dependent and weather-independent parts [41]. The 

weather-independent part is modeled to cover the 

seasonal fluctuations, and trends[41]. The weather-

dependent part is influenced by cooling effects in the 

atmosphere (like, cloud cover) and temperatures [41]. 

Normally, temperature is exponentially smoothened 

before including in the model (the exponential smoothing 

technique is described in the next section) [41].  

Exponential smoothing may be essential to run pre-

processing commands for normalizing the loads that may 

have increased or decreased following an unusual trend 

because of unusual weather conditions [40]. 

2.3.5 Exponential smoothing method 

The exponential smoothing model is represented by the 

following equation [37]: 

Equation (18): Y(t) = β(t)
T
 F(t) + ℰ(t) 

Y(t) = load forecasted 

β(t) = Coefficient vector 

T = transpose operator 

F(t) = fitting function vector 

ℰ(t) = error function 

The function F(t) may correspond to local level 

smoothing, local trend smoothing, and seasonal 

smoothing, as introduced in Equations (9), (10), and (11). 

Reference [46] presented the modified state space 

equations for local level, local trend, and single seasonal 

smoothing based on Standard Holt-Winters as presented 

in Equations (19), (20), and (21): 

Equation (19): Local level Lt = α (Yt / St-s ) + (1 – α) (Lt-1 

+ Tt-1) 

Equation (20): Local trend Tt = β (Lt – Lt-1) + (1 – β)Tt-1 

Equation (21): Seasonality St = γ (Yt / Lt) + (1 – γ)St-s 

Here, α, β, and γ are smoothing parameters. 

Applying the values of Lt, Tt, and St in the k-steps ahead 

forecasting, the Standard Holt-Winters forecasting model 

with single seasonal smoothing may be represented as in 

Equation (22) [46]: 

Equation (22): Yt (k) = (Lt + kTt) St-s+k 

The Standard Holt-Winters forecasting model can also be 

used for including double seasonality in the equation, as 

shown in Equations (23), (24), (25), and (26) [46]: 

Equation (23): Local level Lt = α (Yt / S1t-s1  S2t-s2) + (1 – 

α) (Lt-1 + Tt-1) 

Equation (24): Local trend Tt = β (Lt – Lt-1) + (1 – β)Tt-1 

Equation (25): Seasonality S1t = γ (Yt / Lt S2t-s2) + (1 – 

γ)S1t-s1 

Equation (26): Seasonality S2t = δ (Yt / Lt S1t-s1) + (1 – 

δ)S2t-s2 

Here, α, β, γ, and δ are smoothing parameters. The 

modified equation for forecasting demand with double 

seasonal smoothing is presented in Equation (27) [46]: 

Equation (27): Yt (k) = (Lt + kTt) S1t-s1+k  S2t-s2+k 

In the similar fashion, triple seasonal smoothing can be 

induced in the Standard Holt-Winters forecasting model 

as shown in Equation (28) [47]: 

Equation (28): Yt (k) = (Lt + kTt) S1t-s1+k  S2t-s2+k  S3t-s3+k 

Reference [47] demonstrated that the demand forecasting 

model for electricity load can incorporate triple 

smoothing because of weekends, special seasons, and 

high temperatures. The model is suitable for including 
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intraday cycles, as well [47]. However, the model 

becomes more and more complex as multiple smoothing 

coefficients are included [47]. In addition, the model may 

not be able to predict interrelationships between two or 

more seasonal fluctuations [47]. The model is useful for 

short-term electricity load forecasting with moderate 

accuracy [40][47]. However, it requires loads of data and 

high level of expertise for ensuring reliable forecasting 

outputs. The process for forecasting is presented in the 

Figure 2 [40]. 

 
Figure 2: Electricity load demand forecasting by combining exponential smoothing and multiple regression analysis [40] 

The data is normalized by eliminating unusual event-

based fluctuations (like, a major power cut due to a grid 

failure) and then exponential smoothing of seasonal 

fluctuations is applied [40]. The finalized database is 

transformed to prepare it for regression analysis [40]. 

Some operator-level adjustments may be needed to 

choose the input dates [40]. The finalized regressed 

database represents the forecasted database [40]. 

2.3.6 Multiple Regression method with principal 

component analysis 

Principal component analysis helps in reducing the 

number of factors in a multidimensional forecasting 

model in which, a large number of factors are 

significantly correlated with a relatively smaller number 

of forecast variables [48]. In electricity demand analysis, 

the principal component analysis method can be used to 

generate valid regression equations (after choosing the 

variables with Eigen values above unity) showing 

relationships between multiple seasonal factors and the 

load fluctuations [48]. For the Nth principal component, 

the regression equation can be expressed as in Equation 

(29) [48]: 

Equation (29): PN(i) = ∑αiDi + ℰi 

where, i = 1, 2, 3, 4, - - - -  represents the ith day of the 

dataset, Di represents the day of the week, αi represents the 

loading value, and ℰi represents the forecasting error on 

the ith day of the week.  

Multiple regression with Principal component analysis is 

a simple method with highly accurate results if the 

technique is applied to large sized samples [48][49]. It 

requires moderate software skills in tools like SPSS [50]. 

It helps in deriving the impact of a large number of 

factors on the load forecasts [49]. The forecasting expert 

can eliminate the factors having insignificant impacts by 

simply looking at the factor loading value in the output 

coefficient matrix [48] [49]. Data sets from various 

sources can be included in the factor loading coefficients 

matrix irrespective of whether they are directly or 

indirectly related with electricity load forecasting models 

[49]. Reference [49]demonstrated using factors like CPI 

inflation and CO2 emissions, as well, in electricity load 

forecasting in India. For more accurate results, multiple 

regression with principal component analysis can be 

combined with artificial neural networks, as well [49]. 

2.3.7 Stochastic time series 

Stochastic time series methods are used when the 

historical data sets collected from the past demand 

patterns comprise of some form of internal structure 

reflecting seasonal variations, internal trends, or 

autocorrelations [37][38][39]. The methods involve 

univariate time series employed for short-term load 

forecasting (typically, from one hour to seven days) using 

historical load demand databases [51]. A linear shift 

invariant filter is modeled for extrapolating input signals 

and producing forecasts of loads [51]. The linear shift 

invariant filter is represented by the formula presented in 

Equation (30) [51]. 

Equation (30): X(n) = H(z) U(n) + Wk 

Here, X(n) is the input, U(n) is the output, and H(z) is the 

filter coefficient given by Equation (31) and Wk is a 

random noise factor [51]. 

Equation (31): H(z) = B(z) / A(z) =  / 

 

The functions a(k) and b(k) are constituents of the filter 

coefficient determining the signal model [51]. The 

modeling goal is to find out the values of a(k) and b(k) 

that will make X(n) closest to actual demand patterns 

[51]. 
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The techniques used under stochastic time series 

modeling of electricity load are the following 

[37][38][39][52][53]:  

(a) If the projected load is assumed to be a linear function 

of the historical loads, the autoregressive stochastic 

time series model may be used. Applying Burg’s 

autoregressive all-pole parameters, B(z) = 1, and AR 

model becomes as represented in Equation (32).  

Equation (32): X(n) = H(z) U(n) +Wk =  U(n)/A(z) 

+Wk = U(n) /  + Wk 

Autoregressive models are least accurate among all 

stochastic time series models but do not require 

significant amounts of data [53]. It is easy to 

understand and execute [53]. Reference [53] presented 

a method of improving accuracy by modifying the 

autoregressive model for making it multivariate. The 

modified model was termed as vector autoregressive 

model presented by Equation (33). 

Equation (33): X(n) = C + H(z) U(n) + ℰk  

In Equation (33), C is the K X 1 vector of constants 

and ℰk is the K X 1 vector of white noise. This model 

may be perceived to be of medium accuracy. 

(b) If the projected load is not a linear function of the 

historical loads, the autoregressive moving average 

(ARMA) stochastic time series model can be adopted. 

It involves a state-space modeling in which, the 

current demand pattern plotted on a time series is 

matched with the demand patterns of the previous 

periods [(t – 1), (t – 2), (t – 3), and so on]. The periods 

t, (t – 1), (t – 2), (t – 3), etc. are equally spaced. The 

demand observations during these periods may be 

represented as Zt, Zt-1, Zt-2, Zt-3, and so on. B(z) is the 

back shift operator such that Bj X Zt = Zt-j . The 

autoregressive moving average model is represented 

by Equation (34) [52]. 

Equation (34): φ(B) t = (B) αt  

Here,  = Zt – μ, which is the deviation of observation 

from the mean of the observations. φ(B) is the 

autoregressive operator function represented by 

Equation (35) [52]. 

Equation (35): φ(B) = 1 – φ1 B – φ2 B
2
 – φ3 B

2
 – . . . . .  

– φk B
2
  

In Equation (35), φk represents the autoregressive 

operator at k = 1, 2, 3, 4, - - - .  

(B) is the moving average operator represented by 

Equation (36) [52]. 

Equation (36): (B) = 1 – 1B – 2  B
2
 – 3 B

3
 – . . . . – 

k B
p
 

In Equation (36), k represents the moving average 

operator at k = 1, 2, 3, 4, - - - .  

αt  is the normal distribution of residuals with zero 

mean and a finite variance of σα
2
. 

Also, in ARMA model, A (z) ~ 1 / B(z) [51]. 

ARMA model is moderately accurate and is 

applicable for short-term to medium-term forecasting 

[54][55]. The accuracy can be improved by applying 

seasonality and calendar effects. It is a complex 

method although data requirement is moderate 

(typically 2 years or more) [39][54]. The relatively 

more popular technique is the autoregressive 

integrated moving average model discussed next. 

(c) The autoregressive integrated moving average 

(ARIMA) model is used when the forecasted load 

pattern has highly non-linear relationship with the 

historical load patterns [37][41]. This model is 

preferred for highly accurate electricity load 

forecasting when the load patterns are highly dynamic, 

with seasonality introduced in the model [41]. The 

ARIMA model with seasonality is suitable for short-

term to medium-term modeling, although many 

researchers have preferred it for hourly load 

predictions [41]. Given its importance in electricity 

load forecasting, it is reviewed in a separate sub-

section (2.3.8). 

2.3.8 Autoregressive integrated moving average model 

(ARIMA) 

Power load patterns are highly dynamic with significantly 

stochastic series plotted over a time horizon [34][52]. 

Autoregressive integrated moving average model 

(ARIMA; also called Box-Jenkins model) offers a method 

for making the series static by introducing a  operator as 

described in Equations (37), (38), and (39) [34][52]. 

Equation (37):  = t-1 

Equation (38):  =  ( t-1 ) =   –   t-1  

= t-1  – t-1 + t-2  =   – 2 t-1 + t-2  

Equation (39):   =  ( t-1 ) =  (   – 

  t-1 ) =  ( t-1  – t-1 + t-2 ) =  (   – 2 t-1 

+ t-2 ) =  t-1  – 2 ( t-1 + t-2 ) + t-2 + t-3 =  

 3 t-1  –  t-2  + t-3 

The equation will go on expanding in the fashion of an 

autoregressive integrated moving average model. The 

ARMA Equation (34) may be modified to ARIMA 

Equation (40) [34][52]. 

Equation (40):  φ(B)   t = (B) αt  

In Equation (40),  = (1 – B)
d
 

Further to this, seasonality can be introduced in the 

ARIMA equation, as in Equation (41) [34][41][52]. 

Equation (41): ):  φ(B)       t = (B) 

 αt 

In Equation (41),  is called the autoregressive 

seasonal operator represented by Equation (42) 

[34][41][52].  

Equation (42):  = 1 –  –  – 

 –  – ……. –  

In Equation (42),  = autoregressive seasonal 

parameters at i = 1, 2, 3, 4, - - - p. The operator  is the 
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differentiating seasonal operator defined as  = (1 – 

B
s
)

D
 [52]. Its operation on the predicted demands yields 

 t  = t – s  [52]. 

The operator  is the moving average seasonal 

operator represented by Equation (43) [34][41][52]. 

Equation (43):   = 1 –  –  – 

 –  – ……–  

In Equation (43),  is the moving average seasonal 

operator at i = 1, 2, 3, 4, - - - , q. 

Seasonality can also be included with two and three 

cycles using the modified Holt-Winter smoothing method 

presented in Equation (23) through Equation (28).  

ARIMA becomes highly complex when seasonality is 

included in the model [34][41]. It requires loads of 

historical data that are often quite expensive to obtain 

[34][41]. However, ARIMA has the best accuracy and 

explanatory power among all stochastic time series 

models. It is mostly used for hourly forecasts with highly 

fluctuating demand data [34][41][52]. 

2.3.9 Artificial Neural Networks (ANNs) 

Artificial Neural Network (ANN) is among the oldest 

explored technology for electricity load forecasting [39]. 

The ANN is a machine learning system comprising non-

linear circuits capable of learning from a large data set 

provided to them and carry out non-linear curve fitting 

[37][39][41]. The outputs comprise of non-linear and 

linear mathematical functions of the inputs provided. The 

inputs may be the network inputs or outputs provided by 

other networks. The design considerations are number 

formats (continuous or binary), link directions (bi-

directional or unidirectional), number of layers and 

members in them, and their connectivity. The 

architectures explored for electricity load forecasting 

using neural network are self-organizing maps, 

Boltzmann machine, back propagation (feed forward), 

radial-basis function machine, and Hopfield machine. 

Back propagation (feed forward) is the most popular 

architecture used in electricity load forecasting [39][41]. 

It comprises an input layer, an output layer, and several 

successive neuron layers in between whereby each neuron 

(i) accepts outputs from K input neurons and generates an 

output  ] [41][60]. Here, A is the 

activation function, W is weight assigned to each input 

and i is the bias. It can be used for short-term, medium-

term, and long-term electricity demand forecasting [60]. 

ANN helps in reducing empirical risks in the model [56]. 

ANN performs better than stochastic time series and state 

space forecasting, even with the K-filters and exponential 

smoothing applied [60][61].  

 
Figure 4: Artificial Neural Network with fuzzy and linear/similar days preprocessors 

In practical industrial applications, the inputs to ANN are 

facilitated by preprocessors for preparing fuzzy inputs 

(for seasonal inputs), linear time series inputs, or similar 

days inputs as shown in Figure 3 [60][61][62]. Fuzzy 

logic helps in deriving correlations among huge seasonal 

data sources (identifying first order and second order 

differences) by mapping the actual values to levels (like, 

low, medium, and high). ANNs needs experts to manage 

the forecasting process given its complexity and difficult 

adaptability [60]. 

2.3.10 Support vector-based machine learning 

Support vector-based machine learning is a recent 

innovation evolved from the statistical learning theory. It 

is viewed as a superior technique compared with neural 

networks because it is focused on minimizing structural 

risks instead of empirical risks [56]. The learning machine 

needs fewer learning patterns taken from the main data set 

with their complexities matching the main data set for 

obtaining a good generalization [57][58]. The learning 

algorithm selects an optimum set of rules taking a number 

of parameters (called weights) to form a nested structure 

[58]. The nested structure is formed in such a way that the 

hypothesis space H is divided into smaller spaces H1, H2, 

H3, H4, - - - - , Hn-1, and Hn such that H1 ⊂ H1 ⊂ H2 ⊂ H4 

⊂ - - - - ⊂ Hn-1 ⊂ Hn [58]. This forms a nested structure of 

the hypothesis space in which, each function is formed by 

the previous function that is relatively less complex than 

the encapsulating function [58]. The technique is used for 

creating a non-linear mapping using kernel functions into 

a higher dimensional space through minimizing structural 
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risks [39][56]. In this space, support vectors define linear 

decision boundaries using linear functions defined by Y = 

f(X) = W ψ(X) + B [56]. The function ψ(X) represents a 

non-linear mapping function taking from the input space 

“X” and the coefficients W and B are obtained through 

structural risk minimization [56]. The structural risk 

function is presented as in Equation (44) [56][57]. 

Equation (44): R(C) = (C / N)  (Di, Yi) + 
2
 

/ 2 

In equation (44),  =    

 

The function  

=  = 1 / D, where 

D is the distance between a support vector and an optimal 

canonical separating hyper-plane (OCSH) [58]. The 

second part of the Equation (43) is 
2
 / 2 = 1 / 2D

2
 = 

[ ] / 2 represents 

the flatness of the model function [56][57][58]. 

C and ℰ are parameters prescribed for the risk function 

R(C) [56]. C is called the penalty parameter and having 

an upper bound of infinity and  is the loss 

function that takes a value zero when the values 

forecasted are within the domain of ℰ (called the ℰ-tube) 

[56][57]. C has a trade-off between empirical risk and 

flatness of the model [56]. Both C and ℰ are determined 

by the model users. The optimal canonical separating 

hyper-plane (OCSH) with largest margin locates the 

support vectors (that is, the learning points closest to the 

plane) within the training data [58]. For locating the 

OCSH with largest margin,  
2  

should be minimized 

[58]. The optimization problem is formulated as in 

Equation (45) [57]. 

Equation (45): Minimize 
2
 / 2 given the conditions 

 

In practical cases, (Xi, Yi) may not be approximated to ℰ 

given that there may be some errors represented by slack 

variables ξi and ξi
* 

[57]. In such cases, the optimization 

problem may be written as in Equation (46) [57]. 

Equation (46): Minimize 
2
 / 2 + C  

given the conditions  

Using Lagrange multipliers, the support vector machine 

can be extended to non-linear functions [56]. Solving the 

optimization problem transposed into a primal Lagrangian 

form and applying Karush-Kuhn-Tucker conditions (steps 

have been skipped here), the final linear equation 

obtained is as in Equation (47). 

Equation (47): f(X, αi, αi
*
) = W /  + b, where, 

W/  =  

Here,  , i = 1, 2, 3, …., l represents training patterns 

and the functions αi, αi
* 

are Lagrangian multipliers. 

Equation (47) presents a linear relationship between the 

support vector W and the training patterns. 

Reference [56]found that accuracy of support vector 

regression model outperformed regression methods and 

artificial neural networks method. The accuracy of the 

support vector regression is determined by C, ℰ, and a 

kernel function (called mapping function) . Kernel 

functions help in mapping the high-dimensional feature 

space with the input space [59]. Popular kernel functions 

are Gaussian kernel, Polynomial kernel, and linear kernel. 

Reference [59]found that MAPE varied from 0.8551 to 

0.8501 and RMSE varied from 9.68 to 9.46 when sample 

size was varied from 50 to 500. Hence, support vector 

regression method is highly accurate even at low sample 

sizes. It is highly cost effective and easy to use because 

even small samples can produce accurate results. 

2.3.11 Genetic algorithms 

Genetic algorithms help in identifying an ARIMA series 

with exogenous variables (Xi modeled as Xa) . The 

resulting model is abbreviated as ARIMAX, known as the 

evolutionary algorithm for electricity load forecasting 

[37]. It is suitable for short-term load forecasting from 

one hour ahead to one week ahead with high accuracy 

[39]. The exogenous series can be determined using a 

genetic algorithm and investigated through the ARIMA 

model [39]. Genetic algorithms comprise of a genetic 

code structure (similar to the structures of genomes) that 

can provide near optimal solutions in highly stochastic 

systems using operators called cross-over, and mutation,  

[63]. The parameters to be chosen are population size, 

crossover probability, and mutation probability [63][64]. 

The algorithm is employed in ANNs with a fitness 

function assigned to the state vector space of input 

variables [63][64]. The fitness function is given by 1 / [1 

+ K ] that takes values between 0 and 1 

[63][64][65]. Here, K is a scaling constant and ℰ(t) is the 

forecasting error given by  / M 

[63][64][65]. Here, Y(K) = actual output and   is the 

forecasted output, and M is the original state vector space 

tested in the model . The parent vector generates 

offsprings by either mutating or merging (crossing-over) 

members of the state vector space . In this way, if there 

are M members in the parent vector space, the genetic 

algorithm produces 2M members in the offspring vector 

space. The members with the best fitness values out of the 

offspring vector space are chosen to constitute Xa to be 

fed to the ARIMA model[65].  

2.3.12 Knowledge-based expert systems 

Knowledge-based expert systems are modeled based on 

actual field knowledge load forecasting captured from 

experts[37][39]. The knowledge captured is built in the 
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form of IF-THEN-ELSE rules in the form of a 

sequentially executing algorithm with decision rules. The 

rules reflect the changes in forced and natural factors that 

influence seasonal influence on the electricity load. In 

order to make the model accurate, the rules are localized 

(location-specific) and need to be updated 

regularly[37][39]. The expert systems incorporate fuzzy 

logic for converting system variables into states. They can 

be combined with ANNs for post-processing of the 

outcomes[66]. 

2.3.13 Econometric models 

Econometric modeling is carried out by combining 

statistical techniques with economic theories for 

estimating electricity load profiles. The models are 

prepared using multivariate techniques comprising 

methods like principal component analysis, factor loading 

matrix, and exploratory factor analysis. Econometric 

modeling is highly useful in aggregating load profiles 

categorized as residential, industrial, and commercial 

comprising impacts of weather, economic variables, and 

known active components (like, utilities used in urban and 

rural belts)[39]. 

3. DECISION STRATEGY FOR DEMAND 

FORECASTING IN POWER 

DISTRIBUTION 

In this research, a survey questionnaire was sent to 100 

electrical engineers working in the power industry 

contacted through their published LinkedIn profiles. 

There were 54 responses from electrical engineers 

working in the cities of Athens (Greece, 8 respondents), 

Patras (Greece, 6 respondents), Thessaloniki (Greece, 6 

respondents), Meerut (India, 2 respondents), Gazraula 

(India, 2 respondents), Sahibabad (India, 4 respondents), 

Kanpur (India, 6 respondents), Porto (Portugal, 1 

respondent), Madrid (Spain, 3 respondents), London (UK, 

7 respondents), Abu Dhabi (UAE, 5 respondents), and 

Kuwait (4 respondents) . The questionnaire was designed 

to capture their perspectives about the electricity demand 

forecasting techniques reviewed in the context of the ten 

decision factors presented by references [33] and [34]. 

The profiles of the respondents are presented in the 

Tables 1 and 2. 

Less than five years 14 

Five years to less than 10 years 26 

More than 10 years to less than 15 years 9 

15 years and above 5 

Table 1: Number of years of experience of respondents 

 

Theoretical knowledge with some academic projects done 4 

Theoretical and practical knowledge but not currently involved in electricity demand forecasting 36 

Theoretical and practical knowledge and currently involved in electricity demand forecasting 14 

Table 2: Exposure to electricity demand forecasting techniques 

The responses from the respondents to the questionnaire 

are tabulated in Table 3. The respondents were allowed to 

tick more than one options (among Low, Medium, and 

High) under time horizon only and provide free textual 

inputs about their choices. The nature of enquiry is 

primarily qualitative supported by quantitative data 

pertaining to three levels in each of the eight model 

selection criteria.  

Factors /  

Techniques 

Time 

Horizon 

Accuracy 

level 

Complexity Skills 

needed 

Data 

needed 

Geographic 

coverage 

Adaptability Cost 

Similar day 

approach 

S = 49 

M = 17 

L = 0 

L = 37 

M = 11 

H = 6 

L = 54 

M = 0 

H = 0 

L = 11 

M = 43 

H = 0 

L = 1 

M = 46 

H = 7 

S = 48 

M = 6 

L = 0 

L = 0 

M = 14 

H = 40 

L = 12 

M = 39 

H = 3 

End user 

models 

S = 51 

M = 9 

L = 0 

L = 34 

M = 13 

H = 7 

L = 50 

M = 4 

H = 0 

L = 3 

M = 51 

H = 0 

L = 3 

M = 44 

H = 7 

S = 50 

M = 4 

L = 0 

L = 5 

M = 37 

H = 12 

L = 14 

M = 12 

H = 28 

State space 

framework 

with Kalman 

filter 

S = 50 

M = 6 

L = 0 

L = 53 

M =1 

H = 0 

L = 46 

M = 7 

H = 1 

L = 13 

M = 34 

H = 7 

L = 51 

M = 3 

H = 0 

S = 47 

M = 4 

L = 3 

L = 6 

M = 34 

H = 14 

L = 9 

M = 43 

H = 2 

Multiple 

regression 

S = 48 

M = 14 

L = 0 

L = 51 

M = 3 

H = 0 

L = 47 

M = 6 

H = 1 

L = 4 

M = 48 

H = 2 

L = 28 

M = 26 

H = 0 

S = 49 

M = 1 

L = 4 

L = 14 

M = 11 

H = 29 

L = 11 

M = 42 

H = 1 

Exponential 

smoothing 

S = 54 

M = 27 

L = 9 

L = 0 

M = 53 

H = 1 

L = 14 

M = 39 

H = 1 

L = 0 

M = 46 

H = 8 

L = 14 

M = 40 

H = 0 

S = 48 

M = 4 

L = 2 

L = 13 

M = 11 

H = 30 

L = 11 

M = 43 

H = 0 

Multiple 

regression 

with PCA 

S = 24 

M = 52 

L = 8 

L = 3 

M = 48 

H = 3 

L = 31 

M = 21 

H = 2 

L = 0 

M = 7 

H = 47 

L = 13 

M = 41 

H = 0 

S = 29 

M = 24 

L = 1 

L = 15 

M = 10 

H = 29 

L = 10 

M = 44 

H = 0 
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Factors /  

Techniques 

Time 

Horizon 

Accuracy 

level 

Complexity Skills 

needed 

Data 

needed 

Geographic 

coverage 

Adaptability Cost 

Stochastic 

time series 

except 

ARIMA 

S = 54 

M = 0 

L = 0 

L = 54 

M = 0 

H = 0 

L = 44 

M = 10 

H = 0 

L = 5 

M = 41 

H = 8 

L = 24 

M = 28 

H = 2 

S = 1 

M = 39 

L = 14 

L = 9 

M = 12 

H = 33 

L = 11 

M = 41 

H = 2 

ARIMA S = 54 

M = 44 

L = 0 

L = 0 

M = 53 

H = 1 

L = 31 

M = 23 

H = 0 

L = 4 

M = 41 

H = 9 

L = 24 

M = 28 

H = 2 

S = 2 

M = 39 

L = 13 

L = 8 

M = 11 

H = 35 

L = 11 

M = 40 

H = 3 

ANN S = 54 

M = 47 

L = 17 

L = 0 

M = 15 

H = 39 

L = 0 

M = 13 

H = 41 

L = 0 

M = 44 

H = 10 

L = 3 

M = 27 

H = 24 

S = 44 

M = 4 

L = 6 

L = 3 

M = 15 

H = 36 

L = 4 

M = 27 

H = 23 

Support 

Vector 

Regression 

S = 54 

M = 47 

L = 11 

L = 0 

M = 8 

H = 46 

L = 0 

M = 5 

H =49 

L = 0 

M = 8 

H = 46 

L = 54 

M = 0 

H = 0 

S = 48 

M = 6 

L = 0 

L = 9  

M = 28 

H = 17 

L = 33 

M = 18 

H = 3 

Genetic 

algorithms 

S = 54 

M = 51 

L = 49 

L = 0 

M = 18 

H = 36 

L = 6 

M = 42 

H = 6 

L = 16 

M = 31 

H = 7 

L = 4 

M = 27 

H = 23 

S = 38 

M = 14 

L = 2 

L = 4 

M = 13 

H = 37 

L = 5 

M = 25 

H = 24 

Expert 

systems 

S = 6 

M = 47 

L = 24 

L = 13 

M = 29 

H = 12 

L = 12 

M = 5 

H = 37 

L = 0 

M = 9 

H = 45 

L = 9 

M = 28 

H = 17 

S = 53 

M = 1 

L = 0 

L = 17 

M = 16 

H = 21 

L = 4 

M = 19 

H = 31 

Econometric 

models 

S = 5 

M = 41 

L = 49 

L = 14 

M = 38 

H = 2 

L = 34 

M = 12 

H = 8 

L = 0 

M = 1 

H = 53 

L = 7 

M = 29 

H = 18 

S = 16 

M = 38 

L = 0 

L = 18 

M = 17 

H = 19 

L = 15 

M = 21 

H = 18 

Table 3: Responses from the experts 

The Table 3 presents ratings provided by the 54 experts to 

the three levels defined for each selection criterion. 

Excluding time horizon, skills needed, accuracy level, and 

data needed, the remaining four criteria are largely 

unaddressed by past research studies for all the techniques 

reviewed in this research. The World Bank policy paper is 

an early attempt to introduce these selection criteria (and 

many more, not included in this research). Comparing 

theoretically, the responses are in line with the research 

studies pertaining to time horizon, data needed and 

accuracy level. However, the respondents largely differ 

from literatures pertaining to skills needed. They have 

largely rated the machine learning techniques as needing 

high skills and the regression, exponential smoothing,  

state-space, and ARIMA models as needing medium 

skills. From the free text responses, it is found that experts 

find the machine learning techniques difficult to learn 

given that they are based on sophisticated software and 

model tuning is highly complex (the underlying 

algorithms are largely unknown). On the other hand, time-

series, state space, regression, ARIMA, and exponential 

smoothing are easier because the experts know the 

underlying formulae. These techniques can be easily 

configured in Microsoft Excel. The free text responses 

also revealed that the experts rate ARIMA with 

exponential smoothing, Kalman filtering, or with 

exogenous variables (ARIMAX) as the most adopted 

options. As per them, the next most adopted method is the 

Artificial Neural Networks with preprocessed Linear and 

Fuzzy inputs. However, Support Vector Regression may 

replace this method in future as many electrical engineers 

are testing them in labs.   

4. CONCLUSIONS 

In this research, the key techniques for electricity demand 

forecasting have been reviewed in the form of a 

taxonomy. In addition, based on an eight-factor selection 

criteria adopted from the World Bank policy paper, the 

techniques reviewed in this research are rated with the 

help of inputs from 54 experts. These ratings have come 

from experts working in electricity forecasting practice 

and hence may be used for selecting a technique. The 

criteria are not adequately supported by theories (except a 

few). However, the inputs from experts can be useful in 

making decisions about a forecasting technique and 

establishing future research directions. The experts rated 

time-horizon, accuracy level, and data needed as per the 

empirical theories but rated skills needed differently. 

From their experience, they found that the knowledge of 

underlying algorithms/formulations is key to developing 

expertise on a particular technique. The experts chose 

ARIMA with exponential smoothing and Kalman 

filtering, and ARIMAX, ANN with preprocessed linear 

and fuzzy inputs as the most used techniques. SVR is 

being explored by many experts and may replace ANN in 

future. 
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